No CrossRef data available.
Article contents
Non Linear Optical Gain in Bulk Barrier Amorphous Silicon Phototransistor
Published online by Cambridge University Press: 17 March 2011
Abstract
In this work we report studies on the non linear dependence of the optical gain with the incident power in an amorphous silicon bulk barrier phototransistor based on a n-i-p-i-n structure. The optical gain shows a quasi-hyperbolic dependence on the illumination intensity. The non-linear behavior was predicted by an analytical device model which takes into account the properties of both material and structure, which lead to the amplification mechanism of the device.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
REFERENCES
[1] Guha, S., Yang, J., Banerjee, A., Sugiyama, S., Mat. Res. Soc. Symp. Proc., 507, p. 99, (1998).Google Scholar
[2] Rahn, J.T., Lemmi, F., Lu, J.P., Mei, P., Apte, R.B., Street, R.A., Lujan, R., Weisfield, R., Heanue, J., IEEE Trans. on Nucl. Science, 46, p. 457, (1999).Google Scholar
[3] Caputo, D., Cesare, G. de, Irrera, F., Palma, F., IEEE Trans. on Electron Devices, 43, p. 1351, (1996).Google Scholar
[4] Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Appl. Phys. Lett., 66, p. 1178, (1995).Google Scholar
[5] Bohm, M., Blecher, F., Eckahardt, A., Seibel, K., Schneider, B., Sterzel, J., Benthien, S., Keller, H., Lule, T., Rieve, P., Sommer, M., Uffel, B. van, Librecht, F., Lind, R.C., Humm, L., Efron, U., Roth, E., Mat. Res. Soc. Symp. Proc., 507, p. 327, (1998).Google Scholar
[6] Masini, G., Caputo, D., Cesare, G. de, Dobosz, A. and Palma, F., J. Non-Cryst. Solids, 164–166, p. 805, (1993).Google Scholar
[7] Street, R. A. in “Hydrogenated amorphous silicon”, Cambridge, Solid State Science Series, p. 135 (1991).Google Scholar