Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:20:31.597Z Has data issue: false hasContentIssue false

A New Low Temperature Thin Film Deposition Process: Energetic Cluster Impact (ECI)

Published online by Cambridge University Press:  21 February 2011

H. Haberland
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
M. Leber
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
M. Moseler
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
Y. Qiang
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
O. Rattunde
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
T. Reiners
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
Y. Thurner
Affiliation:
Freiburger Materialforschungszentrum, Stefan Meierstrasse 21, 79104 Freiburg, Germany
Get access

Abstract

A beam of metal cluster ions of variable size is deposited with variable kinetic energy on a substrate. Mirror-like and strongly adhering films are produced on unheated substrates for sufficiently high cluster impact energies. Numerical simulations provide the physical insight why this novel technique gives different, and sometimes superior results compared to conventional methods. Several examples are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haberland, H., Karrais, M., Mall, M., and Thurner, Y., J. Vac. Sci. Technol. A10, 3266 (1992)Google Scholar
2 Haberland, H., Mall, M., Moseler, M., Y.Qiang, , Reiners, Th., and Thurner, Y., J. Vac. Sci. Technol. A 12, 2925 (1994)Google Scholar
3 Haberland, H., Insepov, Z., and Moseler, M., Z. Phys. D 26, 229 (1993)Google Scholar
4 Haberland, H., Insepov, Z., and Moseler, M., Phys. Rev. B., 51, 11061 (1995)Google Scholar
5 McEachern, R. L., Brown, W. L., Jarrold, M. F., Sosnowski, M., Takaoka, G., Usui, H., and Yamada, I., J. Vac. Sci. Technol. a 9, 3105 (1991) and References thereinGoogle Scholar
6 Chapman, B., Glow Discharge Processes, Wiley, New York 1982 Google Scholar
7 The operational principles of gas aggregation sources and the high voltage post acceleration detector is described in detail in: Experimental Techniques, chapter 3 of: Clusters of atoms and Molecules (Haberland, H., ed.) Springer Berlin 1994.Google Scholar
8 Choi, S.G. and Kushner, M., Mat. Res. Soc. Symp. 206, 283 (1991)Google Scholar
9 Granqvist, C. and Buhrmann, R., J. appl. Phys. 47, 2200 (1976)Google Scholar
10 Reiners, Th., C.Ellert, , M.Schmidt, , and H.Haberland, , Phys.Rev.Lett. 74, 1558 (1995)Google Scholar
11 Haberland, H., Leber, M., M.Moseler, , Y.Qiang, , Rattunde, O., Reiners, Th., and Thurner, Y., unpublished resultsGoogle Scholar
12 Moseler, M. and Haberland, H., manuscript in preparationGoogle Scholar
13 Rossnagel, S. M., Mikalsen, D., Kinoshita, H., and Cuomo, J. J., J. Vac. Sci. Technol. a9, 261 (1991), and References thereinGoogle Scholar