Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:21:27.086Z Has data issue: false hasContentIssue false

New Light Emitting Polymers and High Energy Hosts for Triplet Emission

Published online by Cambridge University Press:  01 February 2011

Chris S. K. Mak
Affiliation:
Melville Laboratory, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
Scott E. Watkins
Affiliation:
Melville Laboratory, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK Bio21 Institute, University of Melbourne, Parkville, Vic. 3010, Australia
Charlotte K. Williams
Affiliation:
Department of Chemistry, Imperial College, South Kensington, London SW7 2AZ, UK
Nicholas R. Evans
Affiliation:
Melville Laboratory, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
Khai Leok Chan
Affiliation:
Melville Laboratory, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
Sung Yong Cho
Affiliation:
Melville Laboratory, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
Andrew B. Holmes
Affiliation:
Melville Laboratory, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK Bio21 Institute, University of Melbourne, Parkville, Vic. 3010, Australia Department of Chemistry, Imperial College, South Kensington, London SW7 2AZ, UK
Clare E. Boothby
Affiliation:
4Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
Richard H. Friend
Affiliation:
4Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
Anna Hayer
Affiliation:
4Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
Anna Köhler
Affiliation:
4Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
Get access

Abstract

This paper describes two aspects of research aimed at harnessing the triplet energy generated in electron-hole recombination in polymer electroluminescent devices. The purpose is to design solution-processible phosphorescent organometallic triplet emitters and to design high triplet energy polymer hosts that can transfer triplet energy to the phosphorescent guests. The method employed Suzuki cross coupling reactions to incorporate either phosphorescent cores or high energy triplet monomers covalently into polymer hosts to evaluate their optoelectronic properties. The results showed (i) efficient energy transfer from polyfluorene hosts to red phosphorescent guests and (ii) that pyridine and carbazole monomers could raise triplet energies of hosts. It is concluded that these approaches offer promise in the design of solution processible electrophosphorescent materials for red and green light emitting devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature 347, 539 (1990);Google Scholar
Kraft, A., Grimsdale, A. C. and Holmes, A. B., Angew. Chem. Int. Ed. Engl. 37, 402 (1998);Google Scholar
Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. and Salaneck, W. R., Nature 397, 121 (1999);Google Scholar
Segura, J. L., Acta Polym. 49, 319 (1998);Google Scholar
Bernius, M. T., Inbasekaran, M., O'Brien, J. and Wu, W., Adv. Mater. 12, 1737 (2000);Google Scholar
Mitschke, U. and Bäuerle, P., J. Mater. Chem. 10, 1471 (2000);Google Scholar
Scherf, U. and List, E. J. W., Adv. Mater. 2 14, 477 (2002);Google Scholar
Rees, I. D., Robinson, K. L., Holmes, A. B., O'Dell, R. and Towns, C. R., MRS Bull. 27, 451 (2002).Google Scholar
2. King, K. A., Spellane, P. J. and Watts, R. J., J. Am. Chem. Soc. 107, 1431 (1985).Google Scholar
3. Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. and Forrest, S. R., Nature 395, 151 (1998);Google Scholar
Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E., Forrest, S. R., Appl. Phys. Lett. 75, 4 (1999).Google Scholar
4. Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. and Ueno, K., J. Am. Chem. Soc. 125, 12971 (2003).Google Scholar
5. Tokito, S., Iijima, T., Tsuzuki, T. and Sato, F., Appl. Phys. Lett. 83, 2459 (2003).Google Scholar
6. Holmes, R. J., D'Andrade, B. W., Forrest, S. R., Ren, X., Li, J. and Thompson, M. E., Appl. Phys. Lett. 83, 3818 (2003).Google Scholar
7. Chen, X., Liao, J.-L., Liang, Y., Ahmed, M. O. T., Seng, H.-E. and Chen, S.-A., J. Am. Chem. Soc. 125, 636 (2003).Google Scholar
8. Sandee, A. J., Williams, C. K., Evans, N. R., Davies, J. E., Boothby, C. E., Köhler, A., Friend, R. H. and Holmes, A. B., J. Am. Chem. Soc. 126, 7041 (2004).Google Scholar
9. van Dijken, A., Perro, A., Meulenkamp, E. A. and Brunner, K., Org. Electr. 4, 131 (2003).Google Scholar
10. van Dijken, A., Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stossel, P. and Brunner, K., J. Am. Chem. Soc. 126, 7718 (2004).Google Scholar
11. Köhler, A. and Beljonne, D., Adv. Funct. Mater. 14, 11 (2004).Google Scholar