Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:53:48.315Z Has data issue: false hasContentIssue false

A New Development Of Scanning Hydrogen Imaging System And Its Application

Published online by Cambridge University Press:  10 February 2011

Kazuyuki Ueda
Affiliation:
Toyota Technological Institute, Hisakata 2-Chome, Tempaku, Nagoya 468-8511, Japan
Ken'ichi Ishikawa
Affiliation:
Toyota Technological Institute, Hisakata 2-Chome, Tempaku, Nagoya 468-8511, Japan
Masamichi Yoshimura
Affiliation:
Toyota Technological Institute, Hisakata 2-Chome, Tempaku, Nagoya 468-8511, Japan
Get access

Abstract

Scanning type electron-stimulated desorption (ESD) spectroscopy to detect hydrogen on solid surfaces has been described. To analyze a two-dimensional distribution of hydrogen on solid surface, a pencil-type fine-focused electron gun, of which spot size is less than 300 nm at 800 eV, has been developed using a thermal field emitter. The lateral resolution of analysis is achieved less than 1 μm.

Letters were drawn on a hydrogen-terminated Si(100) surface by irradiation of continuous electron beam to remove hydrogen from the surface, and by the following scanning ESD measurement, a clear letters were confirmed on this surface. Direct lithography by an electron beam on silicon surfaces has been realized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kobayashi, H., Edamoto, K., Onchi, M. and Nishijima, M., J. Chem. Phys. 78, 7429 (1983).Google Scholar
2. Greenlief, C. M., Gates, S. M., and Holberts, A., J. Vac. Sci. Technol. A7, 1845 (1989).Google Scholar
3. Oura, K., Naito, M., Shoji, F., Yamane, J., Umezawa, K., and Hanawa, T., Nucl. Instr. Meth. B45,199 (1990).Google Scholar
4. Lichtman, D., McQuistan, R. B., and Kirst, T. R.; Surf. Sci. 5, 120 (1966).Google Scholar
5. Czyzewski, J. J., Madey, T. E., and Yates, J. T. Jr., Phys. Rev. Lett. 32, 777 (1974).Google Scholar
6. Shabal, Y. S., Surf. Sci. 168, 594 (1986).Google Scholar
7. Boland, J. J., Surf. Sci. 244, 1 (1991).Google Scholar
8. Morita, Y., Miki, K., and Tokumoto, H., Appl. Phys. Lett. 59, 1347 (1991).Google Scholar
9. Ueda, K. and Takano, A., Technol. Rept. Osaka Univ. 39, 21 (1988).Google Scholar
10. Ueda, K. and Takano, A., Jpn. J. Appl. Phys. 27, L2028 (1988).Google Scholar
11. Ueda, K., Kodama, S., and Takano, A., Surf. Sci. 242, 454 (1991).Google Scholar
12. Ueda, K., Kodama, S., and Takano, A., Surf. Sci. 283, 195 (1993).Google Scholar
13. Gomati, M. M. El, Peacock, D. C., Prutton, M. and Walker, G. C., J. Micros. 147, 149 (1986).Google Scholar
14. Chabala, J. M., Revi-Setti, R., and Wang, Y. L., J. Vac. Sci. Technol. B 6, 910 (1988).Google Scholar
15. Satoh, H., Owari, M., and Nihei, Y, J. Vac. Sci. Technol. B 6, 915 (1988).Google Scholar
16. Harris, D. W. and Nowicki, R. S., in Practical Suface Analysis, 2nd ed., edited by Briggs, D. and Seah, M. P. (John Wiley and Sons, New York, 1983), Chap. 6.Google Scholar
17. Joshi, A. and Davis, L. E., J. Vac. Sci. Technol. 14, 1310 (1977).Google Scholar
18. Dylla, H. F., Abrams, J. H., Havland, C. T., and King, J. G., Nature 291, 401 (1981).Google Scholar
19. Ishikawa, K., Yoshimura, M., Ueda, K., and Sakai, Y, Rev. Sci. lnsrum. 68,4103 (1997).Google Scholar
20. Murano, K. and Ueda, K., Surf. Sci. 357/358, 910 (1996).Google Scholar
21. Ueda, K., Ishikawa, K., and Yoshimura, M., Jpn. J. Appl. Phys. 36, L1254 (1997).Google Scholar