Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T21:01:12.512Z Has data issue: false hasContentIssue false

The Nature and Origin of Lateral Composition Modulations in Short-Period Strained-Layer Superlattices

Published online by Cambridge University Press:  10 February 2011

A. G. Norman
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, andrew_norman @nrel.gov
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, andrew_norman @nrel.gov
H. R. Moutinho
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, andrew_norman @nrel.gov
C. Ballif
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, andrew_norman @nrel.gov
M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, andrew_norman @nrel.gov
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, andrew_norman @nrel.gov
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM
S. R. Lee
Affiliation:
Sandia National Laboratories, Albuquerque, NM
J. L. Reno
Affiliation:
Sandia National Laboratories, Albuquerque, NM
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM
J. Mirecki-Millunchick
Affiliation:
Sandia National Laboratories, Albuquerque, NM Now at Dept. of Materials Science and Engineering, University of Michigan, Ann Arbor, MI
R. D. Twesten
Affiliation:
Center for Microanalysis of Materials, University of Illinois, Urbana, IL
Get access

Abstract

The nature and origin of lateral composition modulations in (AlAs)m(InAs)n short-period strained-layer superlattices grown by molecular beam epitaxy on InP substrates have been investigated by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. Strong modulations were observed for growth temperatures between ≈ 540 and 560° C. The maximum strength of modulations was found for SPS samples with InAs mole fraction x (= n/(n+m)) close to ≈ 0.50 and when n m 2. The modulations were suppressed at both high and low values of x. For x > 0.52 (global compression), the modulations were along the <100> directions in the (001) growth plane. For x < 0.52 (global tension), the modulations were along the two <310> directions rotated ≈ ±27° from [110] in the growth plane. The remarkably constant wavelength of the modulations, between ≈ 20–30 nm, and the different modulation directions observed, suggest that the origin of the modulations is due to surface roughening associated with the high misfit between the individual SPS layers and the InP substrate. Highly uniform unidirectional modulations have been grown by control of the InAs mole fraction and growth on suitably offcut substrates, which show great promise for application in device structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blakeslee, A.E., Kibbler, A., and Wanless, M.W., Superlattices and Microstructures 1, 339 (1985).Google Scholar
[2]Hsieh, K.C., Baillargeon, J.N., and Cheng, K.Y., Appl. Phys. Lett. 57, 2244 (1990).Google Scholar
[3]Cheng, K.Y., Hsieh, K.C., and Baillargeon, J.N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
[4]Pearah, P.J., Chen, A.C., Moy, A.M., Hsieh, K.C., and Cheng, K.Y., IEEE J. of Quantum Electron. 30, 608 (1994).Google Scholar
[5]Chou, S.T., Cheng, K.Y., Chou, L.J., and Hsieh, K.Y., Appl. Phys, Lett. 66, 2220 (1995).Google Scholar
[6]Kim, S.-J., Asahi, H., Takemoto, M., Asami, K., Takeuchi, M., and Gonda, S., J. Appl. Phys. 35, 4225 (1996).Google Scholar
[7]Ponchet, A., Rocher, A., Emery, J.-Y., Starck, C., and Goldstein, L., J. Appl. Phys. 74, 3778 (1993).Google Scholar
[8]Ponchet, A., Rocher, A., Ougazzaden, A., and Mircea, A., J. Appl. Phys. 75, 7881 (1994).Google Scholar
[9]Millunchick, J. Mirecki, Twesten, R.D., Follstaedt, D.M., Lee, S.R., Jones, E.D., Zhang, Y., Ahrenkiel, S.P., and Mascarenhas, A., Appl. Phys. Lett. 70, 1402 (1997).Google Scholar
[10]Millunchick, J. Mirecki, Twesten, R.D., Lee, S.R., Follstaedt, D.M., Jones, E.D., Ahrenkiel, S.P., Zhang, Y., Cheong, H.M., and Mascarenhas, A., MRS Bull. 22, 38 (1997).Google Scholar
[11]Follstaedt, D.M., Lee, S.R., Reno, J.L., Twesten, R.D., Norman, A.G., Ahrenkiel, S.P., Moutinho, H.R., Millunchick, J. Mirecki, Mascarenhas, A, and Jones, E.D., this proceedings.Google Scholar
[12]Ahrenkiel, S.P., Norman, A.G., AI-Jassim, M.M., Mascarenhas, A., Millunchick, J. Mirecki, Twesten, R.D., Lee, S.R., Follstaedt, D.M., and Jones, E.D., J. Appl. Phys. 84, 6088 (1998).Google Scholar
[13]Twesten, R.D., Follstaedt, D.M., Lee, S.R., Jones, E.D., Reno, J.L., Millunchick, J. Mirecki, Norman, A.G., Ahrenkiel, S.P., and Mascarenhas, A., Phys. Rev. B 60, 13619 (1999).Google Scholar
[14]Lee, S.R., Millunchick, J. Mirecki, Twesten, R.D., Follstaedt, D.M., Reno, J.L., Ahrenkiel, S.P., and Norman, A.G., J. Mater. Sci.: Mater. in Electron. 10, 191 (1999).Google Scholar
[15]Norman, A.G., Ahrenkiel, S.P., Moutinho, H., Al-Jassim, M.M., Mascarenhas, A., Mirecki-Millunchick, J., Lee, S.R., Twesten, R.D., Follstaedt, D.M., Reno, J.L., and Jones, E.D., Appl. Phys. Lett. 73, 1844 (1998).Google Scholar
[16]Xie, Y.H., Gilmer, G.H., Roland, C., Silverman, P.J., Buratto, S.K., Cheng, J.Y., Fitzgerald, E.A., Kortan, A.R., Schuppler, S., Marcus, M.A., and Citrin, P.H., Phys. Rev. Lett. 73, 3006 (1994).Google Scholar
[17]Solomon, G.S., J. Electron. Mater. 28, 392 (1999).Google Scholar
[18]Shchukin, V.A. and Bimberg, D., Review of Modem Physics 71, 1125 (1999).Google Scholar
[19]Peiro, F., Comet, A., and Morante, J.R., Inst. Phys. Conf. Ser. No. 146, 385 (1995).Google Scholar
[20]Bearzi, E., Benyattou, T., Bru-Chevallier, C., Guillot, G., Harmond, J.C., Marty, O., and Pitaval, M. in Optoelectronic Materials: Ordering, Composition Modulation, and Self-Assembled Structures, edited by E.D., Jones, Mascarenhas, A., and Petroff, P. (Mater. Res. Soc. Proc. 417, Pittsburgh PA, 1996), pp. 271275.Google Scholar
[21]Grenet, G., Gendry, M., Oustric, M., Porte, L., Hollinger, G., Marty, O., Pitaval, M., and Priester, C., Appl. Surface. Sci. 123/124, 324 (1998).Google Scholar
[22]Robach, Y., Phaner, M., Solère, A., Gendry, M., and Porte, L., Appl. Phys. A 66, S1031 (1998).Google Scholar
[23]Li, H., Wu, J., Wang, Z., and Daniels-Race, T., Appl. Phys. Lett. 75, 1173 (1999).Google Scholar
[24]Cullis, A.G., Pidduck, A.J., and Emeny, M.T., J. Crystal Growth 158, 15 (1996).Google Scholar
[25]Glas, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
[26]Ipatova, I.P., Malyshkin, V.G., and Shchukin, V.A., J. Appl. Phys. 74, 7198 (1993).Google Scholar
[27]Ipatova, I.P., Malyshkin, V.G., Maradudin, A.A., Shchukin, V.A., and Wallis, R.F., Phys. Rev. B 57, 12968 (1998).Google Scholar
[28]Asaro, R.J. and Tiller, W.A., Met. Trans. A 3, 1789 (1972), M. A. Grinfel'd Sov. Phys. Dokl. 31, 831 (1986), D.J. Srolovitz, Acta. Met. 27, 621 (1989).Google Scholar
[29]Gao, H., J. Mech. Phys. Solids 39, 443 (1991).Google Scholar
[30]Spencer, B. J., Voorhees, P.W., and Davis, S.H., J. Appl. Phys. 73, 4955 (1993).Google Scholar
[31]Guyer, J.E. and Voorhees, P.W., Phys. Rev. Lett. 74, 4031 (1995), Phys. Rev. B 54, 11710 (1996).Google Scholar
[32]Glas, F., Phys. Rev. B 55, 11277 (1997).Google Scholar
[33]Goldstein, L., Glas, F., Marzin, J.Y., Charasse, M.N., and Roux, G. Le, Appl. Phys. Lett. 47, 1099 (1985).Google Scholar
[34]Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N.P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
[35]Tersoff, J., Teichert, C., and Lagally, M., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
[36]Shchukin, V.A., Bimberg, D., Malyshkin, V.G., and Ledentsov, N.N., Phys. Rev. B 57, 12262 (1998).Google Scholar
[37]Holy, V., Springholz, G., Pinczolits, M., and Bauer, G., Phys. Rev. Lett. 83, 356 (1999).Google Scholar
[38]Tersoff, J., Phang, Y.H., Zhang, Z., and Lagally, M., Phys. Rev. Lett. 75, 2730 (1995).Google Scholar
[39]Tersoff, J., Phys. Rev. Lett. 77, 2017 (1996).Google Scholar
[40]Barabasi, A.-L., Appl. Phys. Lett. 70, 764 (1997).Google Scholar
[41]Ponchet, A., Corre, A. Le, Godefroy, A., Salaun, S., and Poudoulec, A., J. Crystal Growth 153, 71 (1995).Google Scholar
[42]Okada, T., Weatherly, G.C., and McComb, D.W., J. Appl. Phys. 81, 2185 (1997).Google Scholar
[43]Cullis, A.G., MRS Bull. 21, 21 (1996).Google Scholar
[44]Marchenko, V. I., JETP Lett. 33, 381 (1981).Google Scholar
[45]Alerhand, O. L., Vanderbilt, D., Meade, R.D., and Joannopoulos, J.D., Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
[46]Ng, K.-O. and Vanderbilt, D., Phys. Rev. B 52, 2177 (1995).Google Scholar
[47]Wang, P.D., Ledentsov, N. N., Torres, C.M. Sotomayor, Kop'ev, P.S., and Ustinov, V. M., Appl. Phys. Lett. 64, 1526 (1994).Google Scholar
[48]Guryanov, G. M., Cirlin, G.E., Golubok, A.O., Tipissev, S.Ya., Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Bimberg, D., and Alferov, Zh.I., Surface Science 352–354, 646(1996).Google Scholar
[49]Ponchet, A., Rocher, A., Ougazzaden, A., and Mircea, A, Inst. Phys. Conf. Ser. No. 146. 199 (1995).Google Scholar
[50]Desjardins, P., Marchand, H., Isnard, L., and Masut, R.A., J. Appl. Phys. 81, 3501 (1997).Google Scholar
[51]Giannini, C., Tapfer, L., Zhuang, Y., De Caro, L., Marschner, T., and Stolz, W, Phys. Rev. B 55, 5276 (1997).Google Scholar
[52]Krapf, P., Robach, Y., Gendry, M., and Porte, L., Phys. Rev. B 55, R10229 (1997).Google Scholar
[53]Belk, J.G., McConville, C.F., Sudijono, J.L., Jones, T.S., and Joyce, B.A., Suface Science 387, 213 (1997).Google Scholar
[54]Lee, H., Lowe-Webb, R., Yang, W., and Sercel, P.C., Appl. Phys. Lett. 72, 812 (1998).Google Scholar
[55]Saito, H., Nishi, K., and Sugou, S., Appl. Phys. Lett. 74, 1224 (1999).Google Scholar
[56]Yoon, S., Moon, Y., Lee, T.-W., Hwang, H., Yoon, E., and Kim, Y.D., Thin Solid Films 357, 81 (1999).Google Scholar
[57]Hata, K., Ikoma, T., Hirakawa, K., Okano, T., Kawazu, A., Ueda, T., and Akiyama, M., J. Appl. Phys. 76, 5601 (1994).Google Scholar
[58]van Wingerden, J., van Dam, A., Haye, M.J., Scholte, P.M.L.O., and Tuistra, F., Phys. Rev. B 55, 4723 (1997).Google Scholar
[59]Wulfhekel, W., Hattink, B.J., Zandvliet, H.J.W., Rosenfeld, G., and Poelsema, B., Phys. Rev. Lett. 79, 2494 (1997).Google Scholar
[60]Quin, X.R. and Lagally, M.G., Science 278, 1444 (1997).Google Scholar