Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:49:26.810Z Has data issue: false hasContentIssue false

Nanoline Templating of metals and the underlying surface processes

Published online by Cambridge University Press:  01 February 2011

James Hugh Gervase Owen
Affiliation:
[email protected], National Institute for Materials Science, International Centre for Young Scientists, 1-1 Namiki, Tsukuba, 305-0051, Japan, +81-29-851-3354 x8903, +81-29-860-4706
Kazushi Miki
Affiliation:
[email protected], National Institute for Materials Science, Nanomaterials Laboratory, 1-1 Namiki, Tsukuba, 305-0051, Japan
Get access

Abstract

Bi nanolines, which self-assemble on Si(001), have been used as templates for the deposition of a variety of metals: noble metals, transition metals, and Gr. III metals. The different metals show a variety of behaviours on this surface, from a strong interaction in the case of In and Al, to a very weak interaction in the case of Ag. The different phenomena are discussed in terms of a balance of different competing surface mechanisms, such as diffusion and nucleation, which drives the observed behaviours.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hashizume, T., Heike, S., Lutwyche, M. I., Watanabe, S., Nakajima, K., Nishi, T. and Wada, Y., Jap. J. Appl. Phys. 35 p.L1085–L1088 (1996).Google Scholar
2. Chen, W. and Ahmed, H., Appl. Phys. Lett. 62 p.1499 (1987).Google Scholar
3. Miki, K., Owen, J. H. G., Bowler, D. R., Briggs, G. A. D. and Sakamoto, K., Surf. Sci. 421 p.397 (1999).Google Scholar
4. Owen, J. H. G., Miki, K. and Bowler, D. R., J. Mat. Sci. 41 p.45684603 (2006).10.1007/s10853-006-0246-xGoogle Scholar
5. Owen, J. H. G. and Miki, K., Nanotechnology 17 p.430433 (2005).10.1088/0957-4484/17/2/014Google Scholar
6. Owen, J. H. G. and Miki, K., Surf. Sci. 600 p.29432953 (2006).10.1016/j.susc.2006.05.046Google Scholar
7. Chen, Y., Ohlberg, D. A. A., Medeiros-Ribeiro, G., Chang, Y. A. and Williams, R. S., Appl. Phys. Lett. 76 p.4004 (2000).Google Scholar
8. Owen, J. H. G., Bowler, D. R. and Miki, K., Surf. Sci. Lett. 499 p.L124 (2002).10.1016/S0039-6028(01)01912-4Google Scholar
9. Ragan, R., Kim, S., Chen, Y., Li, X. and Williams, R. S., Proc. of SPIE Nanosensing: Materials and Devices 5593 p.167 (2004).Google Scholar
10. Bowler, D. R., Bird, C. F. and Owen, J. H. G., J.Phys.:Cond. Matt. 18 p.L241–L249 (2006).Google Scholar
11. Koga, H. and Ohno, T., Phys. Rev. B 74 p.125405 (2006).10.1103/PhysRevB.74.125405Google Scholar
12. Miki, K., Sakamoto, K. and Sakamoto, T., Surf. Sci. 406 p.312 (1998).Google Scholar
13. Owen, J. H. G., Bowler, D. R., Kusano, S. and Miki, K., Phys. Rev. B 72 p.113304 (2005).Google Scholar
14. Palasantzas, G., Ilge, B., de Nijs, J. and Geerligs, L. J., Surf. Sci. 412–413 p.509517 (1998).Google Scholar