Hostname: page-component-788cddb947-rnj55 Total loading time: 0 Render date: 2024-10-15T08:22:43.831Z Has data issue: false hasContentIssue false

Nanocrystalline Silicon TFTs With 50 nm Thick Deposited Channel Layer, 10 cm2/Vs Electron Mobility and 108 On/Off Current Ratio

Published online by Cambridge University Press:  17 March 2011

Robert B. Min
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
Get access

Abstract

Thin film transistors were made using 50 nm thick directly deposited nanocrystalline silicon channel layers. The transistors have coplanar top gate structure. The nanocrystalline silicon was deposited from discharges in silane, hydrogen and silicon tetrafluoride. The transistors combine a high electron field effect mobility of ∼ 10 cm2/Vs with a low “off” current of ∼ 10−14 A per µm of channel length, and an “on”/“off” current ratio of ∼ 108. This result shows that directly deposited silicon can combine high mobility with low “off” currents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, Y., Microcrystalline Silicon for n and p Channel Thin Film Transistors Complementary Metal-Oxide-Silicon Inverters, PhD. thesis, Princeton University 1999.Google Scholar
2. Chen, Y. and Wagner, S., Appl. Phys. Letters 75, 11251127 (1999).10.1063/1.124617Google Scholar
3. Mulato, M., Chen, Y., Wagner, S., Zanatta, A.R., J. Non Cryst. Solids, 266–269, 12601264 (2000).10.1016/S0022-3093(99)00934-5Google Scholar
4. Cheng, I.-C., “High Electron Mobility TFTs of Nanocrystalline Silicon Deposited at 150oC on Plastic Foil,” MRS Spring 2001 Meeting, paper A26.1.Google Scholar
5. Veprek, S., Iqbal, Z., Kühne, R.O., Capezutto, P., Sarott, F-A., Gimzewski, J.K., J. Phys. C: Solid State Physics 16, 62416242 (1983)10.1088/0022-3719/16/32/015Google Scholar
6. Torres, P., Meier, J., Flückiger, R., Kroll, U., Selvan, J.A. Anna, Keppner, H., Shah, A., Littlewood, S.D., Kelly, I.E. and Giannoulès, P., Appl. Phys. Lett. 69, 13731375 (1996).Google Scholar
7. Flückiger, R., Meier, J., Goetz, M. and Shah, A., J. Appl. Phys. 77, 712716 (1995).10.1063/1.358992Google Scholar
8. Platz, R. and Wagner, S., J. Vac. Sci Technol. A 16, 32183222 (1998).Google Scholar
9. Okada, Y., Chen, J., Campbell, I.H., Fauchet, P.M. and Wagner, S., J. Appl. Phys. 67, 17571760 (1990).Google Scholar