Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T02:11:51.533Z Has data issue: false hasContentIssue false

Multiscale Phenomena in Bruggeman Composites

Published online by Cambridge University Press:  01 February 2011

Ralph Skomski
Affiliation:
Department of Physics and Astronomy and Center for Materials Research and Analysis
Jiangyu Li
Affiliation:
Department of Engineering Mechanics and Center for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588
Jian Zhou
Affiliation:
Department of Physics and Astronomy and Center for Materials Research and Analysis
David J. Sellmyer
Affiliation:
Department of Physics and Astronomy and Center for Materials Research and Analysis
Get access

Abstract

Mechanical, magnetic, and transport properties of arbitrary inhomogeneous composites are investigated by a Bruggeman-type mean-field approach. The theory yields materials parameters as functions of the volume fractions, geometries, and materials constants of the phases. Each system is described by a single response parameter g, which is equal to the percolation threshold of the composite. For macroscopic systems, the approach yields very simple expressions, but nanoscale and multiferroic effects yield relatively complicated corrections to g. In the respective cases, the parameter g depends on the length scale of the composite and has the character of a combination of magnetic, electric, and mechanical degrees of freedom.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bruggeman, D. A. G., Ann. Phys. (5) 24, 637 (1935).Google Scholar
[2] Madelung, E. and Flügge, S., Ann. Phys. (5) 22, 209 (1935).Google Scholar
[3] Einstein, A., Ann. Phys. 17, 549 (1905).Google Scholar
[4] Einstein, A., Ann. Phys. 19, 289 (1906).Google Scholar
[5] Hashin, Z., J. Appl. Mech. 29, 143 (1962).Google Scholar
[6] Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33, 3125 (1962).Google Scholar
[7] Christensen, R. M., Mechanics of Composite Materials, (Wiley, New York, 1979).Google Scholar
[8] Skomski, R. and Coey, J. M. D., Phys. Rev. B 48, 15812 (1993).Google Scholar
[9] Skomski, R. and Coey, J. M. D., IEEE Trans. Magn. 30, 607 (1994).Google Scholar
[10] Doyle, W. T., J. Appl. Phys. 85, 2323 (1999).Google Scholar
[11] Chipara, A., Hul, D., Sankar, J., Leslie-Pelecky, D., Bender, A., Yue, L., Skomski, R., and Sellmyer, D. J., Composites Part B-Engineering 35, 235 (2004).Google Scholar
[12] Stauffer, D. and Aharony, A., Introduction to Percolation Theory, (Taylor & Francis, London 1992).Google Scholar
[13] Ward, I. M. and Hadley, D. W., Mechanical Properties of Solid Polymers, (Wiley, New York, 1993).Google Scholar
[14] Dewey, J. M., J. Appl. Phys. 18, 578 (1947).Google Scholar
[15] Skomski, R. and Coey, J. M. D., Permanent Magnetism, (Institute of Physics, Bristol, 1999).Google Scholar
[16] Chow, T. S., Mesoscopic Physics of Complex Materials, (Springer, New York, 2000).Google Scholar
[17] Skomski, R., Diplomarbeit, THLM Leuna-Merseburg (1986).Google Scholar
[18] Erman, B. and Mark, J. E., Structures and Properties of Rubberlike Networks, (Oxford University Press, New York, 1997).Google Scholar
[19] Skomski, R., J. Phys.: Condens. Matter 15, R841 (2003).Google Scholar
[20] Berg, H. C., Random Walks in Biology, (Princeton University Press, Princeton, New Jersey, 1993).Google Scholar
[21] Skomski, R.. J. Magn. Magn. Mater. 272–276, 1476 (2004).Google Scholar
[22] Berkowitz, A. E., Hansen, M. F., Vecchio, K. S., Parker, F. T., Harper, H., and Spada, F. E., in: Rare Earth Magnets and Their Applications, Eds. Hadjipanayis, G. C. and Bonder, M. J., (Rinton Press, Princeton, 2002) p. 749759.Google Scholar
[23] Heinrich, G., Straube, E., and Helmis, G., Adv. Polym. Sci. 85, 33 (1988).Google Scholar
[24] Li, J.Y., Phys. Rev. Lett. 90, 217601 (2003).Google Scholar