Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T16:02:39.858Z Has data issue: false hasContentIssue false

Multilayered Structures and Low Temperature Conversion Process of Poly(P-Phenylene Vinylene) Thin Films

Published online by Cambridge University Press:  21 March 2011

A. Marletta
Affiliation:
Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, 13560-970, São Carlos- SP, Brazil
Get access

Abstract

We have used a long chain dodecylbenzenesulfonate ion (DBS) to produce self-assembled multilayer structures of poly(p-phenylene vinylene) (PPV) with special features. Rather than alternating layers provided of a PPV-precursor (the poly(xylylidene tetrahydrothiophenium chloride or PTHT) and a polyanion, the alternated adsorption process was carried out with the PPV-precursor and the DBS ions in aqueous solution. The internal layer structure of these PTHT- DBS films is therefore different from conventional layer-by-layer films, since DBS is expected to be incorporated into the PTHT chain via counterion exchange. As a consequence, the conjugation length could also be controlled by controlling the DBS content in the film. Further advantage of introducing DBS lies in the possibility of converting films with a high conjugation length at 115 oC within only 3 min. The luminescence and absorption spectra at low temperatures show a very intense well-resolved vibronic structure. We also demonstrated the band-gap control of PPV films with a possible heterostructure formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marletta, A., Gonçalves, D., Oliveira, O. N. Jr., Faria, R. M., Guimarães, F. E. G., Adv. Mat. 12, 69 (2000).Google Scholar
2. Bradley, D. D. C., J.Phys. D: Appl. Phys. 20, 1389 (1987).Google Scholar
3. Schlenoff, J. B., Wang, L.-J., Macromolecules 24, 6653 (1991).Google Scholar
4. Halliday, D. A., Burn, P. L., Friend, R. H., Bradley, D. D. C., Holmes, A. B., Kraft, A., Synth. Met. 55, 954 (1993).Google Scholar
5. Marletta, A., Gonçalves, D., Oliveira, O. N. Jr., Faria, R. M., Guimarães, F. E. G., Macromolecules 33, 5886 (2000).Google Scholar
6. Marletta, A., Castro, F. A., Gonçalves, D., Oliveira, O. N. Jr., Faria, R. M., Guimarães, F. E. G., presented at the 2000 Synthetic Metals Meeting Gastein, Austria, 2000 (unpublished).Google Scholar
7. Papadimitrakopoulos, F., Yan, M., Rothberg, L. J., Katz, H. E. Chandross, E. A. and Galvin, M. E., Molecular Crystals and Liquid Crystals ed. Vardeny, Z. V. and Rothberg, L. J. (Gordon and Breach Publishers, 1994) pp. 663668.Google Scholar
8. Herold, M., Gmeiner, J., Rieβ, W. and Schwoerer, M., Synth. Met. 75, 109 (1996).Google Scholar
9. Ferreira, M., Cheung, J.H. and Rubner, M.F., Thin Solid Films 244 806 (1994).Google Scholar
10. Decher, G., Hong, J. D. and Schmitt, J., Thin Solid Films 210–211, 831 (1992).Google Scholar