Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:23:15.094Z Has data issue: false hasContentIssue false

MODELLING TWO–PHASE FLOW IN MICROFLUIDIC DEVICES

Published online by Cambridge University Press:  01 February 2011

Mario De Menech*
Affiliation:
Unilever R&D, Olivier van Noortlaan 120 3133 AT Vlaardingen, The Netherlands e-mail: [email protected]
Get access

Abstract

A phase–field method is used to model two–phase flow in microfluidic devices, where capillary and viscous stresses dominate over inertial forces. Dissipative and reactive couplings in the hydrodynamic equations are derived from a Cahn–Hilliard–van der Waals free energy, which accounts for the equilibrium thermodynamics of the fluid system, including phase behavior, interfacial tension and wetting properties. The singularities inherent to the free boundary description are smoothed out by the presence of a diffuse interface over which interfacial stresses are distributed, such that complex phenomena like droplet breakup and coalescence or contact line dynamics can be resolved numerically. The reliability of the scheme used to solve the discretized transport equations is tested against different benchmarks for free flow conditions. The model is then applied to the simulation of the flow of droplets in microdevices, resulting in a satisfactory agreement with the behavior observed in experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Knight, J. B., Vishwanath, A., Brody, J. P., and Austin, R. H.. Phys. Rev. Lett., 80 3863 (1998).Google Scholar
2. Baroud, C. N., Okkels, F., Menetrier, L., and Tabeling, P., to appear in Phys. Rev. E. Google Scholar
3. Anna, S., Bontoux, N., and Stone, H. A.. Appl. Phys. Lett., 82 364 (2003).Google Scholar
4. Link, D. R., Anna, S., Weitz, D. A., and Stone, H., to appear in Phys. Rev. Lett‥ Google Scholar
5. Ganán-Calvo, A. M. and Gordillo, J. M.. Phys. Rev. Lett., 87 274501 (2001).Google Scholar
6. Thorsen, T., Roberts, R. W., Arnold, F. H., and Quake, S. R.. Phys. Rev. Lett., 86 4163 (2001).Google Scholar
7. Dreyfus, R., Tabeling, P., and Willaime, H.. Phys. Rev. Lett., 90 144505 (2003).Google Scholar
8. Kuksenok, O., Jasnow, D., Yeomans, J., and Balazs, A. C.. Phys. Rev. Lett., 91 108301 (2003).Google Scholar
9. Brackbill, J. U., Kothe, D. B., and Zemach, C.. J. Comp. Phys., 100 335 (1992).Google Scholar
10. Cahn, J. W.. J. Chem. Phys., 66 3667 (1977).Google Scholar
11. de Gennes, P. G.. Rev. Mod. Phys., 57 827 (1985).Google Scholar
12. Seppecher, P.. Int. J. Eng. Sci, 34 977 (1996).Google Scholar
13. Jacqmin, D.. J. Comp. Phys., 155 96 (1999).Google Scholar
14. Wesseling, P.. Principles of Computational Fluid Dynamics, Springer–Verlag (2001).Google Scholar
15. Taylor, G. I.. Proc. Roy. Soc. London A, 138 41 (1932).Google Scholar
16. Rallison, J. M.. Ann. Rev. Fluid. Mech., 109 465 (1981).Google Scholar
17. Li, J., Renardy, Y. Y., and Renardy, M.. Phys. Fluids, 12 269 (2000).Google Scholar
18. Chaffey, C. and Brenner, H.. J. Colloid Interface Sci., 24 258 (1967).Google Scholar
19. Gompper, G. and Schick, M., in Phase transitions and Critical Phenomena, edited by Domb, C. and Lebowitz, J. (Academic, London, 1994), vol. 16.Google Scholar