Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-15T10:27:13.706Z Has data issue: false hasContentIssue false

Modeling Stresses in Polyimide Films

Published online by Cambridge University Press:  15 February 2011

Michael T. Pottiger
Affiliation:
DuPont Polymers, Experimental Station, P. O. Box 80101, Wilmington, DE 19880-0101
John C. Coburn
Affiliation:
DuPont Electronics, Experimental Station, P. O. Box 80336, Wilmington, DE 19880-0336
Get access

Extract

The trend towards higher density and smaller feature sizes in today's devices, and the increasing costs associated with designing and manufacturing these devices, has placed a greater emphasis on obtaining an a priori understanding of how various materials will perform in a device. A number of manufacturers have turned to computer modeling, utilizing finite element analysis to aid in the design of new devices and reduce the costs associated with preparing prototypes. The use of computer modeling requires a constitutive equation relating the response of a material to an applied load. Polymer behavior is complex and writing an equation or a series of equations that describe the behavior of the polymer over the entire range of possible temperatures and deformations is nontrivial. Instead, series of equations that describe ideal material behavior are used in an attempt to describe the behavior of real materials over a narrow range of temperatures and deformations. For solids, the ideal material response that is generally used to describe real polymer behavior is linear elasticity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Malvern, L. E., Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs, New Jersey, 1969).Google Scholar
2 Ward, I. M., Mechanical Properties of Solid Polymers. 2nd ed. (John Wiley & Sons, New York, 1983).Google Scholar
3 Bauer, C. L., Ph.D. thesis, University of Massachusetts at Amherst, 1988.Google Scholar
4 Coburn, J. C. and , M.T., Advances in Polyimide Science and Technology, edited by Feger, C., Khojasteh, M. M., and Htoo, M. S. ( Technomic, Lancaster, PA, 1993) pp. 360374.Google Scholar
5 Pottiger, M. T. and Coburn, J. C. in Polymers for Microelectronics, edited by Wilson, C. G. and Thompson, L. F. (Am. Chem. Soc. Symp.; Washington, D. C., 1992).Google Scholar
6 Bauer, C. L. and Farris, R. J., Poly. Eng. Sci., 29 (16), 1107 (1989).CrossRefGoogle Scholar
7 Pottiger, M. T. and Coburn, J. C. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 187194.Google Scholar
8 Pottiger, M. T., Coburn, J. C., Auman, B., and Krizan, T. D., U. S. Patent No. 5 166 292 (24 November 1992).Google Scholar
9 Russell, T. P., Gugger, H., and Swalen, J. D., J. Polym. Sci., Polym. Phys. Ed., 21, 1745 (1983).CrossRefGoogle Scholar
10 Boese, D., Herminghaus, S., Yoon, D. Y., Swalen, J. D., and Rabolt, J. F. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 379386.Google Scholar
11 Senturia, S. D., Noe, S. C., and Pan, J. Y. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 167176.Google Scholar
12 Noe, S. C; Pan, J. Y.; Senturia, S. D. Advances in Polyimide Science and Technology. edited by Feger, C., Khojasteh, M. M., and Htoo, M. S. ( Technomic, Lancaster, PA, 1993) pp. 587600.Google Scholar
13 Lin, L.; Bidstrup, S. A. PMSE Proceedings; 66; American Chemical Society: Washington, D.C., 1992; p 265.Google Scholar
14 Jou, J.-H., Huang, P-T., Chen, H-C., ans Liao, C-N., POlymer, 33 (5), 967 (1992).CrossRefGoogle Scholar
15 Tong, H. M., Hsuen, H. K. D., Saenger, K. L., and Su, G. W., Rev. Sci. Instr., 62 (2), 422 (1991).\CrossRefGoogle Scholar
16 Tong, H. M., Saenger, K. L., and Su, G. W., Proceedings; 49th Annual Technical Conference, Montreal, Canada (Society of Plastics Engineers, 1991) p 1727.Google Scholar
17 Wu, T. Y. and Questad, D. L. in Electronic Packaging Materials Science VI. edited by Ho, P. S., Jackson, K. A., Li, C.-Y., and Lipscomb, G. F. (Mat. Res. Soc. Proc. 264, Pittsburgh, PA, 1992) pp. 143160.Google Scholar
18 Pottiger, M. T. and Coburn, J. C., J. Poly. Sci., Poly. Phys. (submitted for publication).Google Scholar
19 Ferry, J. D., Viscoelastic Properties of Polymers. 3rd ed. (John Wiley, New York, 1980).Google Scholar
20 Geldermans, P., Goldsmith, C., and Bedetti, F. in Polyimides: Synthesis. Characterization, and Applications. Vol. 2, edited by Mittal, K. L. (Plenum Press, New York, 1984) pp. 695711.Google Scholar
21 Sackinger, S. T. and Farris, R. J. in Polyimides: Materials. Chemistry and Characterization, edited by Feger, C., Khojasteh, M. M., and McGrath, J. E. (Elsevier Science, Amsterdam, 1989) pp. 585600.Google Scholar
22 Sackinger, S. T., Ph.D. thesis, University of Massachusetss at Amherst, 1990.Google Scholar
23 Ree, M., Swanson, S., and Volksen, W, Polymer Preprints, 32 (3), 308 (1991).Google Scholar
24 Ree, M., Nunes, T. L., Rex Chen, K.-J., and Czornyj, G. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 211218.Google Scholar
25 Noe, S. C., Ph.D. thesis, Massachusetts Institute of Technology, 1992.Google Scholar