Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T16:01:49.366Z Has data issue: false hasContentIssue false

Micromechanical Behaviour of Amorphous Hydrogenated Silicon Carbide Films

Published online by Cambridge University Press:  15 February 2011

J. Meneve
Affiliation:
Materials Division, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol (Belgium)
R. Jacobs
Affiliation:
Materials Division, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol (Belgium)
F. Lostak
Affiliation:
Materials Division, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol (Belgium)
L. Eersels
Affiliation:
Materials Division, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol (Belgium)
E. Dekempeneer
Affiliation:
Materials Division, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol (Belgium)
J. Smeets
Affiliation:
Materials Division, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol (Belgium)
Get access

Abstract

Amorphous hydrogenated silicon carbide (a-Si1-xCx:H) films (x = 0.65 to 1) were deposited by radio frequency plasma assisted chemical vapour deposition (RF-PACVD). Their friction and wear properties were investigated by means of a conventional ball-on-disk apparatus. The results were correlated with film mechanical properties. It was found that adding silicon to a-C:H (also called diamond-like carbon (DLC)) films reduces the hardness, elastic modulus and internal stress values by 15 to 30 %. Scratch testing induces film spallation from stainless steel substrates at low loads (1 N). In the low normal load (1 N) ball-on-disk tests under humid N2 conditions, a-Si1-xCx:H films (0.7 < x < 0.9) combine a very low wear rate of both the film and the counterbody with a steady state low friction coefficient below 0.1. For higher loads (5 and 10 N), however, this low friction coefficient only lasts for a relatively short time. In this case, the harder diamond-like carbon films perform tribologically better because of their higher wear resistance, low wear rate of the counterbody and generally low friction coefficients between 0.15 and 0.35 in a humid ambient atmosphere. In a dry N2 atmosphere, pure DLC films perform tribologically better than a-S1-xCx:H films in all respects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Peterson, M. B. and Ramalingam, S., in Fundamentals of Friction and Wear of Materials, edited by Rigney, D.A. (American Society for Metals, Ohio, 1980), p. 331.Google Scholar
2 Klages, C.P. and Memming, R., Materials Science Forum 52 & 53, 609 (1989).Google Scholar
3 Enke, K., Thin Solid Films 80, 227 (1981).CrossRefGoogle Scholar
4 Oguri, K. and Arai, T., Surf. Coat. Technol. 47, 710 (1991).Google Scholar
5 Oguri, K. and Arai, T., J. Mater. Res. 7 (6), 1313 (1992).Google Scholar
6 Meneve, J., Dekempeneer, E., Jacobs, R., Eersels, L., Van Den Bergh, V. and Smeets, J., Diamond and Related Materials 1, 553 (1992).Google Scholar
7 Doerner, M.F. and Nix, W.D., CRC Critical Reviews in Solid State and Materials Sciences 14 (3), 225 (1988).CrossRefGoogle Scholar
8 Arteaga, P.A., Ghadiri, M., Lawson, N.S. and Pollock, H.M., Tribology International, in the press (1993).Google Scholar
9 Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 (4), 601 (1986).Google Scholar
10 Bhattacharya, A.K. and Nix, W.D., Int. J. Solids Structures 24 (9), 881 (1988).Google Scholar
11 Julia-Schmutz, C. and Hintermann, H.E., Surf. Coat. Technol. 48, 1 (1991).CrossRefGoogle Scholar
12 Dekempeneer, E.H.A., Jacobs, R., Smeets, J., Meneve, J., Eersels, L., Blanpain, B., Roos, J. and Oostra, D.J., Thin Solid Films 217, 56 (1992).CrossRefGoogle Scholar
13 Jiang, X., Zou, J.W., Reichelt, K. and Grünberg, P., J. Appl. Phys. 66, 4279 (1989); X. Jiang, K. Reichelt and B. Stritzker, ibid., 66, 5805 (1989).Google Scholar
14 Sawides, N. and Bell, T.J., J. Appl. Phys. 72 (7), 2791 (1992).Google Scholar
15 Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 41 (1987)CrossRefGoogle Scholar
16 Holmberg, K., Surf. Coat. Techn. 56, 1 (1992).Google Scholar
17 "Wear-quantities", DIN Standard 50 321, Beuth Verlag GmbH, Dec 1979 (in German).Google Scholar
18 Czichos, H., Tribologie-Handbuch (Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunsweig/Wiesbaden, 1992), p. 499.Google Scholar
19 Smeets, J., Meneve, J., Jacobs, R., Eersels, L. and Dekempeneer, E., presented at the 9th Meeting of EURO CVD, Tampere, Finland, 1993 (to be published in the Conference Proceedings).Google Scholar