Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:22:33.076Z Has data issue: false hasContentIssue false

Micro X-Ray Fluorescence As A High Throughput Screening Method For Combinatorial Chemistry

Published online by Cambridge University Press:  01 February 2011

George J. Havrilla
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Thomasin Miller
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Benjamin Warner
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Cyndi Wells
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Micro X-ray fluorescence is used as a high-throughput screening method for combinatorial applications. These include chemical weapon degradation products, catalytic phosphate hydrolysis and radiologic dispersion device metals. In each application the intrinsic elemental signature was utilized to identify the lead hits for the combinatorial screening in locating peptide sequences exhibiting the desired binding characteristics. In addition to being nondestructive, rapid and non-perturbing to the binding event, this method can be used to quantify the amount of target material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Orschel, M., Klein, J., Schmidt, H.W., and Maier, W.F., Angew. Chem. Int. Ed. 38, 2791 (1999).Google Scholar
2. Cong, P.J., Doolen, R.D., Fan, Q., Giaquinta, D.M., Guan, S.H., McFarland, E.W., Poojary, D.M., Self, K., Turner, H.W., and Weinberg, W.H., Angew. Chem. Int. Ed. 38, 484 (1999)Google Scholar
3. Winograd, N., and Braun, R.M., Spectroscopy 16, 1427 (2001)Google Scholar
4. Taylor, S.J., and Morken, J.P., Science 280, 267 (1998).Google Scholar
5. Haap, W.J., Walk, T.B., and Jung, G., Angew. Chem. Int. Ed. 37, 33113314 (1998).Google Scholar
6. Snively, C.M., Oskarsdottier, G., and Lauterbach, J., J. Comb. Chem. 2, 243245 (2000).Google Scholar
7. Snively, C.M., Oskarsdottier, G., and Lauterbach, J., Catalysis Today 67, 357368 (2001).Google Scholar
8. Snively, C.M., and Lauterbach, J., Spectroscopy 17, 2633 (2002).Google Scholar
9. Snively, C.M., Katzenberger, S., Oskarsdottier, G., and Lauterbach, J., Optics Lett. 24, 18411843 (1999).Google Scholar
10. Fischer, M., and Tran, C.D., Anal. Chem. 71, 22552261 (1999).Google Scholar
11. Alexander, T., and Tran, C.D., Anal. Chem. 73, 10621067 (2001).Google Scholar
12. Senkan, S.M., Nature 394, 350 (1998).Google Scholar
13. Su, H., and Yeung, E.S., J. Am. Chem. Soc. 122, 7422 (2000).Google Scholar
14. Miller, T. C., Kwak, E.-S., Howard, M. E., Vanden Bout, D. A., and Holcombe, J. A. Anal. Chem. 73, 40874095 (2001).Google Scholar