Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:54:56.666Z Has data issue: false hasContentIssue false

Metal Organic Vapor Phase Epitaxy of GaAsN/GaAs Quantum Wells Using Tertiarybutylhydrazine

Published online by Cambridge University Press:  03 September 2012

T. Schmidtling
Affiliation:
Technische Universität Berlin, Institut für Festkörperphysik, Sekr. PN 6-1, Hardenbergstr. 36, D - 10623 Berlin, Germany
M. Klein
Affiliation:
Technische Universität Berlin, Institut für Festkörperphysik, Sekr. PN 6-1, Hardenbergstr. 36, D - 10623 Berlin, Germany
U.W. Pohl
Affiliation:
Technische Universität Berlin, Institut für Festkörperphysik, Sekr. PN 6-1, Hardenbergstr. 36, D - 10623 Berlin, Germany
W. Richter
Affiliation:
Technische Universität Berlin, Institut für Festkörperphysik, Sekr. PN 6-1, Hardenbergstr. 36, D - 10623 Berlin, Germany
Get access

Abstract

GaAsN epilayers and quantum wells with a good structural quality and surface morphology were grown by low pressure metal organic vapor phase epitaxy using tertiarybutylhydrazine as a novel nitrogen source. The dependence of nitrogen incorporation on growth temperature was studied for epitaxy with arsine and tertiarybutylarsine precursors. A nitrogen content of 6.7 % was achieved using tertiarybutylhydrazine and tertiarybutylarsine at a low growth temperature of 530 °C. The observed room temperature luminescence shows an increasing redshift with increasing nitrogen contents of the wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Weyers, M., Sato, M., Ando, H., Jpn. J. Appl. Phys. 31 (1992) L853. See also Sato, M., Mat. Res. Soc. Symp. Proc. 395 (1996) 285.Google Scholar
[2] Bhat, R., Caneau, C., Salamanca-Riba, L., Bi, W., Tu, C., J. Crystal Growth 195 (1998) 427.Google Scholar
[3] Ougazzaden, A., Bellego, Y. Le, Rao, E.V.K., Juhel, M., Leprince, L., and Patriarch, G., Appl. Phys. Lett. 70 (1997) 2861. F99W3.43Google Scholar
[4] Qui, Y., Nikishin, S.A., Temkin, H., Elyukhin, V.A., Kudriavtsev, Yu.A., Appl. Phys. Lett. 70 (1997) 2831.Google Scholar
[5] Pohl, U.W., Möller, C., Knorr, K., Richter, W., Gottfriedsen, J., Schumann, H., Rademann, K., Fricke, A., Mat. Sci. Eng. B, 59 (1999) 20.Google Scholar
[6] Pohl, U.W., Knorr, K., Möller, C., Gernert, U., Richter, W., Bläsing, J., Christensen, J., Gottfriedsen, J., Schumann, H., Jpn. J. Appl. Phys. 38 (1999) L105.Google Scholar
[7] Akasaki, I. and Amano, H., Crystal structure, mechanical properties and thermal properties of GaN, Properties of group III-nitrides, ed. Edgar, J.H. (INSPEC, 1994) 30Google Scholar
[8] Rao, E.V.K., Ougazzaden, A., Bellego, Y. Le, Juhel, M., Appl. Phys. Lett. 72 (1998) 1409.Google Scholar