Article contents
Mesoscale Thin Film Actuator for Promoting Fluid Motion in Microfluidic and Nanofluidic Channels
Published online by Cambridge University Press: 11 February 2011
Abstract
Microfluidic and nanofluidic devices often require actuators to induce fluid motion for applications such as pumping and mixing in small channels. Mixing, for instance, is important in systems where channel or chamber dimensions are on the order of 100 μm or larger as diffusive mixing can be prohibitively slow at these dimensions. In this work, a new mesoscale thin film polymer electromechanical actuator is introduced for use in the aforementioned applications. Unlike inorganic piezoelectric actuators, the devices based on these materials will be relatively easy to fabricate involving no high temperature processing, crystal growth, or microlithography. Fabrication of an array of actuators is simply achieved by spin casting the polymer over top of lithographically patterned gold electrodes at a thickness of less than 50 nm. This simple process enables a microfluidic device based on these actuators to be an integral part of a microfluidic channel rather than a separate unit operation. Depending on the application, the actuator array can be designed and controlled for random perturbations of the fluid flow field as required for mixing or for systematic actuation as required for pumping. These thin-film mesoscale actuators have been characterized and show extremely favorable properties such as a high electrostrictive response (compared to none in the bulk) and a frequency response of up to 50 kHz. In addition, finite element simulations show feasibility of these actuators for use in microfluidic mixing applications.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 1
- Cited by