Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:23:38.588Z Has data issue: false hasContentIssue false

Mechanisms for Ion and Te-Induced Intermixing of GaAs-AlGaAs Interfaces.

Published online by Cambridge University Press:  26 February 2011

K. B. Kahen
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2011
G. Rajeswaran
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2011
Get access

Abstract

Recently, GaAs-AlGaAs interfaces have been interdiffused following furnace and rapid thermal annealing (RTA) of samples containing impurities. Two models are proposed to explain the events occurring during the annealing processes. Te was chosen as the impurity for furnace annealing, whereas for the case of RTA, the impurities were introduced via ion implantation. The Te-induced interdiffusion process is modeled using an ensemble Monte Carlo simulation. The results of the simulation are in good agreement with the Te intermixing data. In the case of ion implantation followed by RTA, the intermixing model is based on the solution of coupled diffusion equations involving the excess vacancies and the Al distribution following ion implantation. Both initial distributions are obtained from the solution of a three-dimensional Monte Carlo simulation of ion implantation into a heterostructure sample. The excess interstitials calculated in the simulation are coupled to the vacancy diffusion via a phenomenological decay constant. Having established the value of the decay constant from one set of experimental results, the model is able to predict accurately other independent experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirose, M., Kume, M., Yoshikawa, A., Shibutani, T., Sugino, T., Itoh, K., Kano, G., and Teramoto, I., Trans. IECE Japan E 69, 392 (1986).Google Scholar
2. Thornton, R. L., Mosby, W. J., and Paoli, T. L., J. Lightwave Technol. 6, 786 (1988).CrossRefGoogle Scholar
3. Meehan, K., Brown, J. M., Holonyak, N. Jr., Burnham, R. D., Paoli, T. L., and Streifer, W., Appl. Phys. Lett. 44, 700 (1984).Google Scholar
4. Kahen, K. B., Appl. Phys. Lett. November (1988).Google Scholar
5. Kahen, K. B., Rajeswaran, G., and Lee, S. T., Appl. Phys. Lett. 53, 1635 (1988).Google Scholar
6. Van Vechten, J. A., J. Appl. Phys. 53, 7082 (1982).Google Scholar
7. Deppe, D. G., Holonyak, N. Jr. Hsieh, K. C., Gavrilovic, P., Stutius, W., and Williams, J., Appl. Phys. Lett. 51, 581 (1987).Google Scholar
8. Tan, T. Y. and Gosele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
9. Cibert, J., Petroff, P. M., Werber, D. J., Pearton, S. J., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49, 223 (1985).Google Scholar
10. Goldstein, B., Phys. Rev. 121, 1305 (1961).CrossRefGoogle Scholar
11. Potts, H. R. and Pearson, G. L., J. Appl. Phys. 37, 2098 (1966).Google Scholar
12. Chiang, S. Y. and Pearson, G. L., J. Appl. Phys. 46, 2986 (1975).CrossRefGoogle Scholar
13. Palfrey, H. D., Brown, M., and Willoughby, A. F. W., J. Electrochem. Soc. 128, 2224 (1981).Google Scholar
14. Zahari, M. D. and Tuck, B., J. Phys. Phys. D 15, 1741 (1982).Google Scholar
15. Reis, H., Fuller, C. S., and Morin, F. J., Bell Syst. Tech. J. 35, 535 (1956).Google Scholar
16. Mei, P., Schwarz, S. A., Venkatesan, T., Schwartz, C. L., and Colas, E., Proceedings of the Spring 1988 Materials Research Society Meeting, Reno, Nevada, April 5–8, 1988 (in press).Google Scholar
17. Lee, S. T., Fellinger, P., Braunstein, G., Kahen, K. B., and Rajeswaran, G., Appl. Phys. Lett. December (1988).Google Scholar
18. Biersack, J. P., Nucl. Instrum. Methods B 19, 32 (1987).Google Scholar
19. Zeigler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, Vol.1 (Pergamon, New York, 1986).Google Scholar
20. Schlesinger, T. E. and Kuech, T., Appl. Phys. Lett. 49, 521 (1986); P. Mei, H. W. Yoon, T. Venkatesan, S. A. Schwarz, and J. P. Harbison, Appl. Phys. Lett. 50, 1823 (1987).Google Scholar