Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T16:36:01.036Z Has data issue: false hasContentIssue false

Mechanism of ArF Laser induced Photolytic Deposition of W From WF6 on Etched Si and Unetched Si

Published online by Cambridge University Press:  21 February 2011

Xiafang Zhang
Affiliation:
Tulane University, Laser Microfabrication Lab, New Orleans, LA 70118
Herbert J. Leary Jr.
Affiliation:
Tulane University, Laser Microfabrication Lab, New Orleans, LA 70118
Susan D. Allen
Affiliation:
Tulane University, Laser Microfabrication Lab, New Orleans, LA 70118
Get access

Abstract

ArF excimer laser-induced photolytic chemical vapor deposition of W on etched Si substrates using tungsten hexafluoride has been studied. Our experimental results show that tungsten film thickness is proportional to the laser irradiation time and fluence, and that the deposition rate initially increases, then decreases with increasing WF6 pressure. the activation energy obtained from an arrhenius plot is much less than that for conventional CVD. a deposition mechanism has been proposed which yields results in good agreement with the experimental dat A. the absorption cross section of WF6 is determined to be 2.75xl0-18 cm2/molecule.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tz, L. F.. Kwakman, C, W. J.. Vermeulen, E. H. A. Granneman, and Hitchman, M. L., in Tungsten and other Refractory Metals for VLSL applications II, edited by Broadbent, Eliot K. (Material Research Society, Pittsburgh, PA, 1987) p. 377.Google Scholar
2 Heszler, P., Carlsson, J. O. and Mogyorosi, P., J. Vac. Sci. Technol., A 11, 2924 (1993).Google Scholar
3 Sparks, M., J. appl. Phys. 47, 837 (1976).Google Scholar
4 York, P. K., Eden, J. G., Coleman, J. J., Fernandez, G. E. and Beernink, K. J., J. appl. Phys. 66,5001 (1989).Google Scholar
5 Imen, K., Lin, J. Y. and Allan, S. D., J. appl. Phys. 66, 488 (1989).Google Scholar
6 Lantz, S. L., Ford, W. K., Bell, A. E. and D. Danielson, J. Vac. Sci. Technol. 11, 911 (1993).Google Scholar
7 Kuiper, A. E. T., Willemsen, M. F. C. and Schmitz, J. E. J., Appl. Surf. Sci. 38, 338 (1989).Google Scholar
8 Kobayashi, N., Nakamura, Y., Goto, H. and Homma, Y., J. appl. Phys. 73, 4637 (1993).Google Scholar
9 Xiafang, Zhang, Ph D thesis, the University of Iowa, 1995.Google Scholar
10 Green, M. L., Ali, Y. S., T. Boone, Davidson, B. A., Feldman, L. C. and Nakahara, S., J. Electrochem. Soc. 134, 2285 (1987).Google Scholar
11 Okabe, Hideo, in Photochemistry of Small Molecules (John Wiley & Sons, N. Y, 1978) p.373 Google Scholar