Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:13:00.232Z Has data issue: false hasContentIssue false

A Mechanism for the Removal Of Dislocations in SOI Compliant Substrate Systems

Published online by Cambridge University Press:  10 February 2011

R. V. Kukta
Affiliation:
Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125
L. B. Freund
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Get access

Abstract

It is demonstrated that the time required for strain transference during the postgrowth anneal of a SOI compliant substrate system is much too long to explain the observed reduction in dislocation density in the resulting microstructure. A mechanism by which misfit dislocation segments are drawn out of the system through viscous dissipation in the bonding layer is proposed and demonstrated to be consistent with observation. The mechanism is mtodeled in the context of elastic dislocation theory and linear viscoelasticity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chua, C. L., Hsu, W. Y., Lin, C. H., Christenson, G., and Lo, Y. H., Appl. Phys. Lett. 64(26), 3640 (1994).Google Scholar
2. Carter-Coman, C., Brown, A. S., Jokerst, N. M., Dawson, D. E., Bicknell-Tassius, R.,Feng, Z.C., Rajkumar, K.C., and Dagnall, G., J. Elect. Mat. 25(7), 1044 (1996).Google Scholar
3. Ejeckam, F. E., Lo, Y. H., and Subramanian, S., Appl. Phys. Lett. 70(13), 1685 (1997).Google Scholar
4. Powell, A. R., Iyer, S. S., and LeGoues, F. K., Appl. Phys. Lett. 64(14), 1856 (1994).Google Scholar
5. Yang, Z., Guarin, F., Tao, I. W., Wang, W.I., and Iyer, S. S., J. Vac. Sci. Technol. B 13(2), 789 (1995).Google Scholar
6. Tanner, M. O., Chu, M. A., Wang, K. I., Meshkinpour, M., and Goorsky, M. S., J. Cryst. Growth 157, 121 (1995).Google Scholar
7. Freund, L. B., Appl. Phys. Lett. 70(26), 3519 (1997).Google Scholar
8. Freund, L. B., and Nix, W. D., 1996 (unpublished).Google Scholar
9. Levy, R. A. and Nassau, K., Solid State Technol. Oct, 123 (1986).Google Scholar
10. Freund, L. B., J. Appl. Phys. 68(5), 2073 (1990).Google Scholar
11. Alexander, H., in Dislocations in Solids, edited by Nabarro, F.R.N. (Elsevier Science Publishers, 1986) pp. 115234.Google Scholar
12. Kukta, R. V., PhD thesis, Brown University, 1998.Google Scholar
13. Christensen, R. M., Theory of Viscoelasticity, 2nd ed. (Academic Press, New York, 1982), p. 45.Google Scholar
14. Hirth, J. P. and Lothe, J., J., Theory of Dislocations, 2nd ed. (John Wiley & Sons, Inc., New York, 1982), p. 152.Google Scholar