Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:16:37.941Z Has data issue: false hasContentIssue false

Mechanical Properties of a Cryomilled Nanostructured Al-Mg Alloy

Published online by Cambridge University Press:  01 February 2011

B. Q. Han
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
F. A. Mohamed
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92612
C. Bampton
Affiliation:
Rocketdyne Division, Boeing, Canoga Park, CA 91309
E. J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
Get access

Abstract

The microstructural characteristics and mechanical behavior at room temperature of a nanostructured Al-Mg alloy, with grain sizes of approximately 100 nm, manufactured by a cryomilling process were investigated in the present study. The results reveal an asymmetry of yield strength between tension and compression. On the basis of the mechanical behavior results it appears that the presence of a few micron inclusions may have a negative effect on tensile behavior of the cryomilled nanostructured Al-Mg alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koch, C.C., Nanostructured Materials: Processing, Properties and Potential Applications. Noyes Publications (William Andrew Publishing), Norwich, NY, 2002.Google Scholar
2. Sun, X.K., Cong, H.T., Sun, M. and Yang, M.C., Metall. Mater. Trans. A 31A, 1017 (2000).Google Scholar
3. Tellkamp, V.L., Melmed, A. and Lavernia, E.J., Metall. Mater. Trans. A 32A, 2335 (2001).Google Scholar
4. Mukai, T., Suresh, S., Kita, K., Sasaki, H., Kobayashi, N., Higashi, K. and Inoue, A., Acta Mater. 51, 4197 (2003).Google Scholar
5. Koch, C.C., Morris, D.G., Lu, K. and Inoue, A., MRS Bulletin February, 54 (1999).Google Scholar
6. Koch, C.C., Scri. mater. 49, 657 (2003).Google Scholar
7. Lu, L., Sui, M.L. and Lu, K., Science 287, 1463 (2000).Google Scholar
8. Karimpoor, A.A., Erb, U., Aust, K.T. and Palumbo, G., Scri. mater. 49, 651 (2003).Google Scholar
9. Milligan, W.W., Mechanical Behavior of Bulk Nanocrystalline and Ultrafine-grain Metals. In: Milne, I., Ritchie, R. O. and Karihaloo, B. (eds.) Comprehensive structural integrity, vol. 8. Elsevier Pergamon, 2003, pp. 529.Google Scholar
10. Han, B.Q., Lee, Z., Nutt, S.R., Lavernia, E.J. and Mohamed, F.A., Metall. Mater. Trans. A 34A, 603 (2003).Google Scholar
11. Meyers, M.A. and Chawla, K.K., in Mechanical Metallurgy Principles and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1984).Google Scholar
12. ASM Handbook: Alloy Phase Diagrams, vol. 3 (American Society for Metals, 1992).Google Scholar
13. Han, B.Q., Matejczyk, D.E., Zhou, F., Zhang, Z., Bampton, C.C., Lavernia, E.J. and Mohamed, F.A., Metall. Mater. Trans. A, in print (2003).Google Scholar
14. Rittner, M.N., Weertman, J.R., Eastman, J.A., Yoder, K.B. and Stone, D.S., Mater. Sci. Eng. A237, 185 (1997).Google Scholar
15. Horstemeyer, M.F., Scri. mater. 39, 1491 (1998).Google Scholar
16. Jain, M. and Christman, T., Acta Metall. 42, 1901 (1994).Google Scholar
17. Carsley, J.E., Fisher, A., Milligan, W.W. and Aifantis, E.C., Metall. Mater. Trans. A 29A, 2261 (1998).Google Scholar
18. Berbon, P.B., Bingel, W.H., Mishra, R.S., Bampton, C.C. and Mahoney, M.W., Scrip. mater. 44, 61 (2001).Google Scholar
19. Han, B.Q., Lavernia, E.J. and Mohamed, F.A., Mat. Sci. Eng. A358, 318 (2003).Google Scholar
20. Zhou, F., Liao, X.Z., Zhu, Y.T., Dallek, S. and Lavernia, E.J., Acta Mater. 51, 2777 (2003).Google Scholar
21. Kuhlmann-Wilsdorf, D., Mater. Sci. Forum 331–337, 689 (2000).Google Scholar