Article contents
Mechanical Properties and Residual Stresses in Oxide/Metal Multilayer Films Synthesized by Ion Beam Assisted Deposition
Published online by Cambridge University Press: 15 February 2011
Abstract
Films of Al, Al2O3 and Al/Al2O3 microlaminates were formed by ion beam assisted deposition (IBAD) at R ratios from 0.0025 to 0.5 and film thicknesses between 150 and 2600 nm. Oxide films were amorphous while metal layers were crystalline with small grains and texture for both PVD and IBAD conditions. The average stress in the oxide film is tensile at R=0 and becomes compressive, saturating at approximately 15 eV/atom. The residual stress in the Al films is tensile over all R ratios and the stress in the microlaminate roughly follows a rule of mixtures. Deformation of ductile substrates on which films had been deposited revealed that the critical strain to fracture was strongly dependent on residual stress. Large compressive stresses in monolithic films produced by ion beam assisted deposition delayed the onset of crack initiation while the presence of multiple layers, in general, lowered the crack density at saturation, suggesting a possible ductilizing effect.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
REFERENCES
- 2
- Cited by