Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T07:30:15.141Z Has data issue: false hasContentIssue false

Measurement of Piezoelectric Transverse and Longitudinal Displacement with Atomic Force Microscopy for PZT Thick Films

Published online by Cambridge University Press:  20 May 2011

Yuta Kashiwagi
Affiliation:
Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Takashi Iijima
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Toru Aiso
Affiliation:
Toyo Corporation, 1-1-6 Yaesu, Chuo-ku, Tokyo 103-8284, Japan
Takashi Yamamoto
Affiliation:
National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 Japan
Ken Nishida
Affiliation:
National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 Japan
Hiroshi Funakubo
Affiliation:
Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku, Yokohama 226-8502, Japan
Takashi Nakajima
Affiliation:
Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
Soichiro Okamura
Affiliation:
Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
Get access

Abstract

The actual transverse and longitudinal displacement of PZT thick film was measured using a newly developed atomic force microscopy (AFM). The AFM is attached a feedback circuit named “torsion feedback”. The torsion and Z-height feedback circuits control an AFM cantilever to follow piezoelectric deformation of the sample. To measure transverse displacement, the cantilever contacts the edge of sample. The transverse displacement is determined from the torsion feedback signal absolutely. To measure longitudinal displacement, the cantilever contacts the center of sample. The longitudinal displacement is determined from Z-height feedback signal absolutely. A 5-μm-thick PZT film was prepared on Pt/Ti/SiO2/Si substrates. The film sample was shaped square pillar. The side electrode length (L) of square pillar shaped sample was ranged from 1000 μm to 10 μm. The relation between side electrode length and the transverse or the longitudinal displacements were investigated. With decreasing L, the transverse displacement decreased nonlinearly, and the longitudinal displacement increased nonlinearly. The finite element method (FEM) simulation suggests that the substrate clamped PZT film behaved nonlinearly. The effective -d31 and d33 were calculated from the measured displacement, and these values increase with decreasing L. The effective d33 and -d31 showed correlation, and the ratio was d33 : -d31 = 5.3 : 1 , whereas the bulk ratiois d33 : -d31 = 2.4 : 1.This result suggests that the substrate clamping effect of the transverse displacement was larger than that of the longitudinal displacement.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Newnham, R. E., Properties of Materials, Anisotropy, Symmetry, Structure. (Oxford University Press, New York, 2005) p. 87.Google Scholar
2. Moulson, A. J., and Herbert, J. M., Electroceramics, Materials, Properties, Applications. 2nd ed. (Wiely, Chichester, 2003) p.344.Google Scholar
3. Lefki, K., and Dormans, G. J. M., J. Appl. Phys., 76, 1764 (1994).Google Scholar
4. Mckinstry, S. T., and Muralt, P., J. Electroceram., 12, 7 (2004).Google Scholar
5. Conway, N. J., Traina, Z. J., and Kim, S-G., J. Micromech. Microeng., 17, 781 (2007).Google Scholar
6. Chen, L., Li, J-H., Slutsker, J., Ouyang, J., and Roytbourd, A. L., J. Mater. Res., 19, 2853 (2004).Google Scholar
7. Barzegar, A., Damjanovic, D., Ledermann, N., and Muralt, P., J. Appl. Phys., 93, 4756 (2003).Google Scholar
8. Kholkin, A. L., Colla, E. L., Tagantsev, A. K., Taylor, D. V., and Setter, N., Appl. Phys. Lett., 68, 2577 (1996).Google Scholar
9. Kashiwagi, Y., Iijima, T., Nakajima, T., and Okamura, S., J. Ceram. Soc. Jpn., 118, 640 (2010).Google Scholar
10. Christman, J. A., Woolcott, R. R. Jr., Kingon, A. I., and Nemanich, R. J., Appl. Phys. Lett., 73, 3851 (1998).Google Scholar
11. Iijima, T., Ito, S., Matsuda, H., Jpn. J. Appl. Phys., 41. 6735 (2002).Google Scholar
12. Kanno, I., Kotera, H., Wasa, K., Sens. Actuators A, 107, 68 (2003).Google Scholar
13. Iijima, T., Osone, S., Shimojo, Y., Nagai, H., Int. J. Appl. Ceram. Technol., 3, 442 (2006).Google Scholar
14. Berlincourt, D. A., Cmolik, C., and Jaffe, H., Proc. IRE, 48, 220 (1960).Google Scholar
15. Yamamoto, T., Yamamoto, M., Nishida, K., Funakubo, H., Iijima, T., Aiso, T., and Ichikawa, Y., Jpn, J. Appl. Phys., 48, 09KA04 (2009).Google Scholar
16. Iijima, T., Kunii, K., Jpn. J. Appl. Phys., 40, 5740 (2001).Google Scholar
17. Okino, H., Hayashi, M., Iijima, T., Yokoyama, S., Funakubo, H., Setter, N., and Yamamoto, T., Mater. Res. Soc. Symp. Proc., 902E, 49 (2006).Google Scholar