Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:59:42.814Z Has data issue: false hasContentIssue false

Materials specific electronic correlation effects and spectral weight ‘hot spots’ in intermetallic actinides

Published online by Cambridge University Press:  22 May 2012

Tanmoy Das
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.
Jian-Xin Zhu
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.
Tomasz Durakiewicz
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.
John J. Joyce
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.
Matthias J. Graf
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.
Get access

Abstract

Many metallic actinide systems host partially filled 5f electrons in the low-energy spectrum. Consequently, they exhibit diverse quantum mechanical phenomena such as magnetism, superconductivity, a mysterious hidden-order phase, or heavy-fermion behavior. Here we present results of a unified theoretical method based on the self-consistent GW formalism for the electronic many-body self-energy. We calculate the dynamic electronic correlation spectra starting from materials specific first-principles electronic band-structure. In particular, we present results for four isostructural intermetallic actinides PuCoIn5, PuCoGa5, PuRhGa5, and UCoGa5. A common underlying property of these materials is a strong spin–orbit coupling split band structure that enables substantial spin fluctuations. In a feedback effect on the electronic structure they create electronic ‘hot spots’, where the single-particle spectral weight is maximum, resulting in a universal peak-dip-hump feature. These results are in good agreement with experiments, suggesting that actinides are adequately described by the intermediate Coulomb interaction regime, where both itinerant (peak) and localized (hump) features coexist.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moreno, N. O. et al. ., Phys. Rev. B 72, 035119 (2005).Google Scholar
2. Kaneko, K. et al. ., Physica B: Cond. Mat. 329-333, 510 (2003).Google Scholar
3. Freeman, A. J., Darby, J. B. (eds). The Actinides: Electronic Structure and Related Properties Vols. 1 and 2 (Academic, New York, 1974); A. M. Boring and J. L. Smith, in Challenges in Plutonium Science, Vol. I, Los Alamos Science 26; N.G. Cooper (ed.), (Los Alamos National Laboratory) 90 (2000); [http://la-science.lanl.gov/lascience26.shtml].Google Scholar
4. Wills, J.M., et al. . J. Elec. Spec. Rel. Phenom. 135 163-166 (2004); A.J. Arko et al. Phys. Rev. B 62, 1773 (2000); S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature 410, 793(2001); J. H. Shim, K. Haule, and G. Kotliar, Nature 446, 513 (2007).Google Scholar
5. Graf, M. J. et al. ., Phys. Rev. B 72, 045135 (2005).Google Scholar
6. Sarrao, J. L. et al. ., Nature 420, 297 (2002); N. J. Curro et al., Nature 434, 622(2005).Google Scholar
7. Bauer, E. D. et al. ., J. Phys.: Condens. Matter 24, 052206 (2012).Google Scholar
8. Grin, Y. N., Rogl, P., Hiebl, K., J. Less. Comm. Met. 121, 497 (1986).Google Scholar
9. Ikeda, S. et al. ., Physica B 329-333, 610 (2003).Google Scholar
10. Ōnuki, Y. et al. ., J. Optoel. Adv. Mat. 10, 1535 (2008).Google Scholar
11. Noguchi, S., Okuda, K., J. Magn. Magn. Mat. 104-107, 57 (1992).Google Scholar
12. Troc, R. et al. ., Phys. Rev. B 70, 184443 (2004).Google Scholar
13. Kambe, S. et al. ., Phys. Rev. B 76, 024411 (2007).Google Scholar
14. Palstra, T. T. M. et al. ., Phys. Rev. Lett. 55, 2727 (1985); T. Das, arXiv:1201.2246(2012).Google Scholar
15. Denlinger, J. D. et al. ., J. Elec. Spect. Rel. Phen. 117118, 347 (2001).Google Scholar
16. Das, T., Zhu, J.-X., and Graf, M. J., Phys. Rev. Lett. 108, 017001 (2012).Google Scholar
17. Das, T., Markiewicz, R. S., and Bansil, A., Phys. Rev. B 81, 174504 (2010).Google Scholar
18. Das, T., Markiewicz, R. S., and Bansil, A., Phys. Rev. B 81, 184515 (2010).Google Scholar
19. Blaha, P. et al. ., An augmented plane wave + local orbitals program for calculating crystal properties, (K. Schwarz, Tech. Universitat Wien, Austria, 2001)Google Scholar
20. Perdew, J. P., Burke, S., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
21. Das, T., and Balatsky, A. V., Phys. Rev. Lett. 106, 157004 (2011).Google Scholar
22. Das, T., Markiewicz, R. S., and Bansil, A., arXiv:1202.2596 (2012).Google Scholar
23. Pourovskii, L. V. et al. ., Phys. Rev. B 73, 060506 (2006); A. B. Shick et al., Phys. Rev. B 83, 155105(2011); M. E. Pezzoli, K. Haule, and G. Kotliar, Phys. Rev. Lett. 106, 016403 (2011).Google Scholar
24. Moriya, T., Spin fluctuations in itinerant electron magnetism, (Springer Series in Solid-State Sciences 56, Springer, Berlin, 1985).Google Scholar
25. Basak, S. et al. ., Phys. Rev. B 80, 214520 (2009).Google Scholar
26. Joyce, J. J. et al. ., Phys. Rev. Lett. 91, 176401 (2003); J. J. Joyce et al., J. Phys. Conf. Ser. 273, 012023(2011).Google Scholar
27. Durakiewicz, T., and Joyce, J. J. (private communication).Google Scholar
28. Markiewicz, R. S., Das, T., and Bansil, A., Phys. Rev. Lett. 98, 197004 (2007).Google Scholar