Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:58:57.205Z Has data issue: false hasContentIssue false

Magneto-Optical Properties of Ultratitn Ferromagnetic Films

Published online by Cambridge University Press:  21 February 2011

S. D. Bader
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, Illinois 60439
E. R. Moog
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, Illinois 60439
C. Liu
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, Illinois 60439
J. Zak
Affiliation:
Materials Science Division, Argonne National Laboratory Argonne, Illinois 60439
Get access

Abstract

The surface magneto-optic Kerr effect (SMOKE) has been used to explore the properties of ultrathin ferromagnetic films. The ultrathin regime corresponds to thicknesses less than the depth penetration of light and includes the monolayer range. The ultrathin regime possesses unique magneto-optic properties: the Kerr rotation and ellipticity, in general, behave differently than in the thick film limit. Measurements and simulation in the longitudinal geometry for bcc Fe on Au(100) provide a dramatic example of the metallic reflector enhancement effect due to the nonmagnetic Au underlayer. The rotation enhancement is accompanied by a high reflectivity, as opposed to being at the expense of the reflectivity. Measurements in both polar and longitudinal geometries for epitaxially-stabilized fcc Fe films grown on Cu(100) and Pd(100) indicate the presence of perpendicular surface anisotropy, which suggests new approaches to realizing vertical data-storage media.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moog, E. R. and Bader, S. D., Superlattices Microstruct. 1, 543 (1985); S. D. Bader, E. R. Moog, and P. Griinberg, J. Magn. Magn. Mater. 3, L295 (1986).Google Scholar
2. Bader, S. D. and Moog, E. R., J. Appl. Phys. 61, 3729 (1987).Google Scholar
3. Montano, P. A., Fernando, G. W., Cooper, B. R., Moog, E. R., Naik, H. M., Bader, S. D., Lee, Y. C., Darici, Y. N., Min, H., and Marcano, J., Phys. Rev. Lett. 59, 1041 (1987).Google Scholar
4. Liu, C., Moog, E. R., and Bader, S. D., Phys. Rev. Lett. 60 2422 (1988); J. Appl. Phys. 64, 5325 (1988).Google Scholar
5. Moog, E. R., Liu, C., Bader, S. D., and Zak, J., Phys. Rev. B39, 6949 (1989).Google Scholar
6. Beier, T., Jahrreiss, H., Pescia, D., Woike, Th., and Gudat, W., Phys. Rev. Lett. 61, 1875 (1988).Google Scholar
7. Araya-Pochet, J., Ballentine, C. A., and Erskine, J. L., Phys. Rev. B 38, 7846 (1988).Google Scholar
8. Prinz, G. A., Phys. Rev. Lett. 54, 1051 (1985).Google Scholar
9. Arrott, A. S., Heinrich, B., Purcell, S. T., Cochran, J. F., and Urquhart, K. B., J. Appl. Phys. 61,3721 (1987).Google Scholar
10. Liu, C. and Bader, S. D., Physica B (to be published).Google Scholar
11. Fu, C. L., Freeman, A. J., and Oguchi, T., Phys. Rev. Lett. 54, 2700 (1985).Google Scholar
12. Gay, J. G. and Richter, R., Phys. Rev. Lett. 56, 2728 (1986).Google Scholar
13. Kryder, M. H., J. Appl. Phys. 57, 3913 (1985).Google Scholar
14. Tsushima, K. and Koshizuka, N., IEEE Trans. Magn. MAG-23, 3473 (1987).Google Scholar
15. Lee, C. H., He, H., Lamelas, F., Vavra, W., Uher, C., and Clarke, Roy, Phys. Rev. Lett. 62, 653 (1985).Google Scholar
16. den Broeder, F. J. A., Kuiper, D., van de Mosselaer, A. P., and Hoving, W., Phys. Rev. Lett. 60, 2769 (1988).Google Scholar
17. Boufelfel, A., Hillebrands, B., Stegeman, G. I., and Falco, C. M., Solid State Commun. 68, 201 (1988).Google Scholar
18. Gradmann, U., J. Magn. Magn. Mater. 54–57, 733 (1986).Google Scholar
19. Diirr, W., Taborelli, M., Paul, O., Germar, R., Gudat, W., Pescia, D., and Landolt, M., Phys. Rev. Lett. 62, 206 (1989).Google Scholar
20. Moog, E. R., Zak, J., Huberman, M. L., and Bader, S. D., Phys. Rev. B (to be published).Google Scholar
21. Yoshino, T. and Tanaka, S., Jpn. J. Appl. Phys. 5, 989 (1966).Google Scholar
22. Krinchik, G. S. and Artem'ev, V. A., Soy. Phys. JETP 26, 1080 (1968).Google Scholar
23. Judy, J. H., IEEE Trans. Magn. MAG-6, 563 (1970).Google Scholar
24. Katayama, T., Suzuki, Y., Awano, H., Nishihara, Y., and Koshizuka, N., Phys. Rev. Lett. 60, 1426 (1988).Google Scholar
25. Katayama, T., Nishihara, Y., and Awano, H., J. Appl. Phys. 61, 4329 (1987).Google Scholar
26. Sato, K., Kida, H., and Katayama, T., Jpn. J. Appl. Phys. 27, L237 (1988).Google Scholar
27. Dillon, J. F. Jr., Gyorgy, E. M., Hellman, F., Walker, L. R., and Fulton, R. C., J. Appl. Phys. 64, 6098 (1988).Google Scholar
28. Kolk, A. J. and Orlovic, M., J. Appl. Phys. 34, 1060 (1963).Google Scholar
29. Judy, J. H., Alstad, J. K., Bate, G., and Wiitala, J. R., IEEE Trans. Magn. MAG-4, 401 (1968).Google Scholar
30. Kranz, J. and Stremme, H., IEEE Trans. Magn. MAG-5, 453 (1969).Google Scholar
31. Daalderop, G. H. O., Mueller, F. M., Albers, R. C., and Boring, A. M., Appl. Phys. Lett. 52, 1639 (1988); J. Magn. Magn. Mater. 74, 211 (1988).Google Scholar