Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:16:36.577Z Has data issue: false hasContentIssue false

Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids

Published online by Cambridge University Press:  21 March 2011

W. Voit
Affiliation:
Engineering Materials Physics Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden XaarJet AB, SE-175 26 Järfälla, Sweden
D. K. Kim
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
W. Zapka
Affiliation:
XaarJet AB, SE-175 26 Järfälla, Sweden
M. Muhammed
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
K. V. Rao
Affiliation:
Engineering Materials Physics Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Get access

Abstract

We present a study on the magnetic behavior of nanosized iron oxide particles coated with different surfactants (sodium oleate, PVA and starch) in a ferrofluid. The effect of the coating material, and different particle concentrations in the ferrofluid have been magnetically investigated to determine the effective magnetic particle size and possible interaction. The superparamagnetic iron oxide particles, synthesized by a controlled co-precipitation technique, are found to contain magnetite (Fe3O4) as a main phase with a narrow physical particle size distribution between 6 and 8 nm. The mean effective magnetic size of the particles in different ferrofluid systems are estimated to be around 4-5 nm which is smaller than the physical particle size. On a 10% dilution in the starch coated ferrofluid we observe a decrease in the blocking temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Popplewell, J. and Sakhnini, L., J. Magn. Magn. Mater. 149, 73 (1995)Google Scholar
2. Kechrakos, D. and Trohidou, K. N., Phys. Rev. B, 58, 12169 (1998)Google Scholar
3. Chantrell, R. W., Coverdale, G. N., El Hilo, M. and O'Grady, K., J. Magn. Magn. Mater. 157/158, 250 (1996)Google Scholar
4. Bradbury, A., Menear, S., O'Grady, K. and Chantrell, R. W., IEEE Trans. Magn. MAG-20, 1846 (1984)Google Scholar
5. Massart, R., IEEE Trans. Magn. MAG-17, 1247 (1981)Google Scholar
6. Kim, D. K., Zhang, Y., Voit, W., Rao, K. V., and Muhammed, M., J. Magn. Magn. Mater 225/1-2, 30 (2001)Google Scholar
7. Massart, R. and Cabuil, V., J. Phys. Chem. 84, 967 (1987)Google Scholar
8. Granqvist, C. G. and Buhrman, R. H., J. Appl. Phys. 47, 2200 (1976)Google Scholar
9. Chantrell, R. W., Popplewell, J. and Charles, S. W., IEEE Trans. Magn. MAG-14, 975 (1978)Google Scholar
10. Néel, L., Ann. Geophys. 5, 99 (1949)Google Scholar
11. Dorman, J -L., Bessias, L. and Fiorani, D., J. Phys. C. 21, 2015 (1988)Google Scholar
12. Tronc, E., Prene, P., Jolivet, J. P., D'Orazio, F., Lucari, F., Fiorani, D., Godinho, M., Cherkaoui, R., Nogues, M., Dorman, J. L., Hyperfine Interact. 95, 129 (1995)Google Scholar