Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:40:55.005Z Has data issue: false hasContentIssue false

Light-Emitting Devices Based on a Binuclear Complex of Ruthenium(II) with Crown Ether as Solid Electrolyte

Published online by Cambridge University Press:  21 March 2011

Frédéric Lafolet
Affiliation:
Laboratoire d'Electrochimie Organique et de Photochimie Redox, Université Joseph Fourier Grenoble 1 and CNRS (UMR 5630), B.P. 53, 38041 Grenoble Cedex 9, France
Karine Gorgy
Affiliation:
Laboratoire d'Electrochimie Organique et de Photochimie Redox, Université Joseph Fourier Grenoble 1 and CNRS (UMR 5630), B.P. 53, 38041 Grenoble Cedex 9, France
Jean-Claude Leprêtre
Affiliation:
Laboratoire d'Electrochimie Organique et de Photochimie Redox, Université Joseph Fourier Grenoble 1 and CNRS (UMR 5630), B.P. 53, 38041 Grenoble Cedex 9, France
Olivier Stéphan
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier Grenoble 1 and CNRS (UMR C5588), 140 rue de la physique, B.P. 87 Saint Martin d'Hères Cedex, France
Get access

Abstract

Solid-state light-emitting devices have been fabricated by using blends of a binuclear complex of ruthenium(II), with both 1,6-bis[4-(4'-methyl-2,2'-bipyridyl)]hexane and regular 2,2'-bipyridine ligands and lithium trifluorosulfonate/18-crown-6 ether complex. Orange light is emitted for low turn on voltage, i.e. ranging from 2.5-3V, close to the electrochemical gap of the binuclear Ru-based complex. However, the device performances decrease upon operation within few hours. We report that the main degradation process involved in the decrease of the light emission intensity during device operation is based on an electrochemical degradation of the ruthenium complex, mainly a loss of capacity on the reduction side.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pei, Q., Yang, Y., Yu, G., Zhang, C. and Heeger, J. A., J. Am. Chem. Soc. 118, 3922 (1996).Google Scholar
2. Abruna, H. D., Bard, A., J. Am. Chem. Soc. 104, 2611 (1982).Google Scholar
3. Lyons, C. H., Abbas, E. D., Lee, J. K. and Rubner, M. F., J. Am. Chem. Soc. 120, 12100 (1998).Google Scholar
4. Maness, K. M., Masui, H., Wightman, R. M. and Murray, R. W., J. Am. Chem. Soc. 119, 3987 (1997).Google Scholar
5. Cano-Yelo, H. and Deronzier, A., J. Chem. Soc. Faraday Trans. 80, 3011 (1984).Google Scholar
6. Collomb, M.-N., Deronzier, A., Gorgy, K., Lepretre, J.-C., New J. Chem., 455 (2000).Google Scholar
7. Schaffer, R. E., Chance, R. R., Knoll, K., Schrock, R. R., and Silbey, R., in Conjugated Polymeric Materials:Opportunities in Electronics, Optoelectronics and Molecular Electronics, edited by Brédas, J. L. and Chance, R. R., The Netherlands, 365 (1990).Google Scholar
8. Yang, Y., Pei, Q., J. Appl. Phys. 81(7), 3294 (1997).Google Scholar
9. Sahai, R., Baucom, D. A. and Rillema, D. P., Inor. Chem. 25, 3843 (1986).Google Scholar