Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:02:19.070Z Has data issue: false hasContentIssue false

Lattice Instabilities, Anharmonicity and Phase Transitions in PbTiO3 and PbZrO3

Published online by Cambridge University Press:  10 February 2011

K. M. Rabe
Affiliation:
Department of Applied Physics, Yale University, New Haven, CT 06520
U. V. Waghmare
Affiliation:
Department of Applied Physics, Yale University, New Haven, CT 06520
Get access

Abstract

Most perovskite structure oxides exhibit structural phase transitions from a hightemperature cubic phase to a distorted low-temperature phase which can be described by the freezing-in of one or more phonon modes of the cubic structure [1]. The first-order cubic-tetragonal ferroelectric transition in PbTiO3 at Tc = 763 K involves the freezing-in of a single F15 polar mode. In PbZrO3 , the structure of the antiferroelectric low-temperature orthorhombic phase is far more complicated, with forty atoms per unit cell and the freezing-in of R25 and Σ3 modes, perhaps accompanied by other modes as well [2][3].

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Oxford, 1977), Chap. 8.Google Scholar
2. Jona, F., Shirane, G., Mazzi, F. and Pepinsky, R., Phys. Rev. 105, 349 (1957). 3. W. Cochran and A. Zia, phys. stat. sol 25, 273 (1968).Google Scholar
4. Cohen, R. E. and Krakauer, H., Ferroelectrics 136, 65 (1992); R. E. Cohen, Nature 358, 136 (1992).Google Scholar
5. Singh, D. J. and Boyer, L. L., Ferroelectrics 136, 95 (1992).Google Scholar
6. King-Smith, R. D. and Vanderbilt, D., Phys. Rev. B 49, 5828 (1994); W. Zhong, R. D. King-Smith and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994).Google Scholar
7. Rabe, K. M. and Waghmare, U. V., Ferroelectrics 151, 59 (1994). 306Google Scholar
8. Posternak, M., Resta, R. and Baldereschi, A., Phys. Rev. B 50, 8911 (1994).Google Scholar
9. Ghosez, Ph., Gonze, X. and Michenaud, J.-P., Ferroelectrics 153, 19 (1994).Google Scholar
10. Postnikov, A. V., Neumann, T. and Borstel, G., Phys. Rev. B 50, 758 (1994); A. V. Postnikov and G. Borstel, Phys. Rev. B50, 16403 (1994).Google Scholar
11. Krakauer, H. and Yu, R., Phys. Rev. Lett. 74, 4067 (1995).Google Scholar
12. Singh, D. J., Phys. Rev. 52, 12559 (1995).Google Scholar
13. Gonze, X., Allan, D. C. and Teter, M. P., Phys. Rev. Lett. 68, 3603 (1992).Google Scholar
14. Rabe, K. M. and Waghmare, U. V., Phys. Rev. B 52, 13236 (1995).Google Scholar
15. Rabe, K. M. and Waghmare, U. V., to be published in J. Phys. Chem. SolidsGoogle Scholar
16. Waghmare, U. V. and Rabe, K. M., unpublished.Google Scholar