Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T20:48:27.118Z Has data issue: false hasContentIssue false

Large area light propagation in quasi-zero average refractive index materials

Published online by Cambridge University Press:  31 January 2011

Principia Dardano
Affiliation:
[email protected], IMM-CNR, Napoli, Napoli, Italy
Vito Mocella
Affiliation:
[email protected], IMM-CNR, Napoli, Napoli, Italy
Stefano Cabrini
Affiliation:
[email protected], Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States
Allan S. Chang
Affiliation:
[email protected], Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States
Luigi Moretti
Affiliation:
[email protected], IMM-CNR, Napoli, Napoli, Italy
Ivo Rendina
Affiliation:
[email protected], IMM-CNR, Napoli, Napoli, Italy
Deindre Olynick
Affiliation:
[email protected], Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States
Bruce Harteneck
Affiliation:
[email protected], Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States
Scott Dhuey
Affiliation:
[email protected], Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States
Get access

Abstract

In this paper the experimental results show near-infrared light collimation through large area (2 x 2 mm) nanopatterned material with refractive index quasi-zero on the average. This quasi-zero refractive index is obtained alternating photonic crystals strips with effective refractive index neff = –1 and air strips (n = 1). Layers optically annihilate each other, verifying the optical antimatter concept theoretically proposed by Pendry et al [J. Phys.: Condens. Matter 15, 6345 (2003)].

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pendry, J., Phys. Rev. Lett. 85, 3966 (2000).Google Scholar
2 Leonhardt, U., Science 312, 1777 (2006).Google Scholar
3 Pendry, J., Schurig, D., and Smith, D., Science 312, 1780 (2006).Google Scholar
4 Tsakamakidis, K., Boardman, A., and Hess, O., Nature 450, 397 (2007).Google Scholar
5 Shalaev, V., Nature Phot. 1, 41 (2007).Google Scholar
6 Fang, N., Lee, H., Sun, C., and Zhang, X., Science 308, 534 (2005).Google Scholar
7 , Smolyaninov, Hung, Y.-J., and Davis, C., Science 315, 1699 (2007).Google Scholar
8 Rakich, P., Dahlem, M., Tandon, S., Ibanescu, M., Soljac, M., Petrich, G., Joannopoulos, J., Kolodziejski, L. A., and Ippen, E. P., Nature Mat. 5, 93 (2006).Google Scholar
9 Lu, Z., Shi, S., Murakowski, J., Schneider, G., Schuetz, C., and Prather, D., Phys. Rev. Lett. 96, 173902 (2006).Google Scholar
10 Notomi, M., Phys. Rev. B 62, 10696 (2000).Google Scholar
11 Notomi, M., Optical and Quantum Electronics 34, 133 (2002).Google Scholar
12 Chatterjee, R., Panoiu, N., Liu, K., Dios, Z., Yu, M., Doan, M., Kaufman, L., Osgood, R., and Wong, C., Phys. Rev. Lett. 100, 187401 (2008).Google Scholar
13 Pendry, J. and Ramakrishna, S., J. Phys.: Condens. Matter 15, 6345 (2003).Google Scholar
14 Pendry, J., Contemp. Phys. 45, 191 (2004).Google Scholar
15 Ramakrishna, S., Rep. Prog. Phys. 68, 449 (2005).Google Scholar
16 Shamonina, E., Kalinin, V., Ringhofer, K., and Solymar, L., Electron. Lett. 37, 1243 (2001).Google Scholar
17 Ramakrishna, S. A., Pendry, J., Wiltshire, M., and Stewart, W., J. Mod. Opt. 50, 1419 (2003).Google Scholar
18 Li, J., Zhou, L., Chan, C., and Sheng, P., Phys. Rev. Lett. 90, 083901 (2003).Google Scholar
19 Panoiu, N., Osgood, R., Zhang, S., and Brueck, S., J. Opt. Soc. Am. B 23, 506 (2006).Google Scholar
20 Mocella, V., Dardano, P., Moretti, L., and Rendina, I., Opt. Express 15, 6605 (2007).Google Scholar
21 Xiao, S., Qiu, M., Ruan, Z., and He, S., Appl. Phys. Lett. 85, 4269 (2004).Google Scholar
22 Zhang, X., Phys. Rev. B 71, 165116 (2005).Google Scholar
23 Martinez, A. and Marti, J., Phys. Rev. B 71, 235115 (2005).Google Scholar
24 Webb, K. and Yang, M., Phys. Rev. E 74, 016601 (2006).Google Scholar
25 Schouten, H., Visser, T., Lenstra, D., and Blok, H., Phys. Rev. E 67, 036608 (2003).Google Scholar
26 Olynick, D., Liddle, A., and Rangelow, I., J. Vac. Sci. Technol. B 23, 2073 (2005).Google Scholar
27 Ramakrishna, S. A., Guenneau, S., Enoch, S., Tayeb, G., and Gralak, B., Phys. Rev. A 75, 063830 (2007).Google Scholar