Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:58:04.284Z Has data issue: false hasContentIssue false

Large Area Continuous Electron Beam for Semiconductor Processing

Published online by Cambridge University Press:  22 February 2011

Cameron A. Moore
Affiliation:
Colorado State University, Department of Electrical Engineering, Fort Collins, CO 80523;
J. J. Rocca
Affiliation:
Colorado State University, Department of Electrical Engineering, Fort Collins, CO 80523;
G. J. Collins
Affiliation:
Colorado State University, Department of Electrical Engineering, Fort Collins, CO 80523;
P. E. Russell
Affiliation:
Joel Usa, 11 Dearborn Road, Peabody, MA 01960.
J. Geller
Affiliation:
Joel Usa, 11 Dearborn Road, Peabody, MA 01960.
Get access

Abstract

We have achieved wide area (38 cm2) electron beam heating of semiconductor materials using a glow discharge electron beam with electron energies between 3 and 7 keV. A continuous beam 7 cm in diameter with a power density up to 90 W/cm2 was used to anneal both boron-implanted (30 keV, 5 × 1015 atoms/cm2) n-type <100> silicon wafers as well as two types of Ti-Si composite films to form this titanium disilicide Annealing of the implanted samples was obtained without redistribution of the original dopant profile using a 15-sec. electron beam exposure. Formation of TiSi2 was found to decrease the sheet resistivity of these samples a factor of ten for both 400 Å films of Ti on Si and codeposited Ti-Si mixtures of overall stoichiometry TiSi2. Due to the high electron beam power density achieved over a large area, one can uniformly anneal an entire wafer in a single exposure without sample or beam scanning.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sedgwick, T. O., J. Electron Chem. Soc. 130, 484 (1983).Google Scholar
2.Regolini, J. L., Gibbons, J. F., Sigmon, T. W., Pease, R.F.W., Magee, T. J., and Peng, J., Appl. Phys. Lett. 34, 410 (1979).Google Scholar
3.Knapp, J. A. and Picraux, S. T., Appl. Phys. Lett. 38, 873 (1981).Google Scholar
4.Greenwald, A. C., Kirkpatrick, A. R., Little, R. G., and Minnucci, J. A., J. Appl. Phys. 50, 783 (1979).Google Scholar
5.Ianno, N. J., Verdeyen, J. T., Chan, S. S., and Streetman, B. G., Appl. Phys. Lett. 39, 622 (1981).Google Scholar
6.Shibata, T., Sigmon, T. W., Regolini, J. L. and Gibbons, J. F., J. Electrochem. Soc., 128(3), 637 (1981).Google Scholar
7.Tzeng Lue, Juh, Chung Liu, Yuen, and Jiun Shen, Wei, Appl. Phys. Lett., 38(5), 372 (1981).Google Scholar
8.Suzuki, Setsu, Ohkubo, Yasushi, Matsuoka, Fumitomo, and Itoh, Tadatsugu, Appl. Phys. Lett. 42(9), 797 (1983).Google Scholar
9.Rocca, J. J., Meyer, J. D., Yu, Z., Farrell, M., and Collins, G. J., Appl. Phys. Lett. 41, 811 (1982).Google Scholar
10.Yep, T. O., Fulks, R. T., and Powell, R. A., Appl. Phys. Lett. 38, 162 (1981).Google Scholar
11.Murarka, S. P., J. Vac. Sci. Technol., 17(4), 775 (1980).Google Scholar
12.Park, H. K., private communication.Google Scholar