Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:32:42.556Z Has data issue: false hasContentIssue false

Isothermal I-V Characteristics of 4H-SiC p-n Diodes with Low Series Differential Resistivity at Avalanche Breakdown

Published online by Cambridge University Press:  15 March 2011

Konstantin V. Vassilevski*
Affiliation:
Microelectronics Research Group, FO.R.T.H., Vassilika Vouton, Heraklion, 71110, Greece Ioffe Institute, 26, Politechnicheskaya str., St. Petersburg, 194021, Russian Federation
Konstantinos Zekentes
Affiliation:
Ioffe Institute, 26, Politechnicheskaya str., St. Petersburg, 194021, Russian Federation
Alexandr V. Zorenko
Affiliation:
State Scientific & Research Institute “Orion”, Kyiv, 252057, Ukraine.
Leonid P. Romanov
Affiliation:
Joint Stock Company “Svetlana-Electronpribor”, St. Petersburg, 194021, Russian Federation.
*
#Corresponding author: FAX: 30-81-394106; e-mail: [email protected]
Get access

Abstract

4H-SiC p+-n-n+ diodes of low series resistivity were fabricated and packaged. The diodes exhibited a homogeneous avalanche breakdown at voltage Ub=260V. These diodes were capable to dissipate a pulsed power density of 7.4 MW/cm2 at avalanche current. Isothermal I-V characteristics of fabricated diodes were measured at forward bias and at avalanche breakdown. An experimental determination of the electron saturated drift velocity along the c-axis in 4H-SiC was performed for the first time. It was found to be 7.7×106cm/s at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tager, A. S., Izvestia VUZov SSSR, Radioelectronika, V. XXII, no. 10, 5 (1979) [in Russian].Google Scholar
2. Rottner, K., Frischholz, M., Myrtveit, T., Mou, D., Nordgren, K., Henry, A., Hallin, C., Gustafsson, U., Schoner, A., Mat. Sci. & Eng., B61–62, 330 (1999).Google Scholar
3. Mehdi, I., Haddad, G. I., Mains, R. K., J. Appl. Phys., 64, 1533 (1988).Google Scholar
4. Vassilevski, K. V., Sov. Phys. Semicond., 26, 10, 994 (1992).Google Scholar
5. Gruzinskis, V., Luo, Y., Zhao, J., Weiner, M., Shiktorov, P., Starikov, E., Book of Abstracts of ICSCRM'99, (255) (1999).Google Scholar
6. Muench, W., Pettenpaul, E., J. Appl. Phys., 48, 4823, 1977.Google Scholar
7. Kimoto, T., Yamamoto, T., Chen, Z.Y., Yano, H., Matsunami, H., Book of Abstracts of ICSCRM'99, (312) (1999).Google Scholar
8. Khan, I. A., Cooper, J.A. Jr., Book of Abstracts of ICSCRM'99, (323) (1999).Google Scholar
9. Vassilevski, K. V., Dmitriev, V. A., Zorenko, A. V., J. Appl. Phys., 74, 7612 (1993).Google Scholar
10. Neudeck, P. G., Fazi, C., IEEE Trans Electron Devices, 18, 96 (1997).Google Scholar
11. Mickevicius, R., Zhao, J.H., J. Appl. Phys., 83, 3161 (1998).Google Scholar
12. Nilsson, H-E., Belloti, E., Brennan, K. F., Hijelm, M., Book of Abstracts of ICSCRM'99, (390) (1999).Google Scholar
13. Vassilevski, K.V., Rendakova, S.V., Nikitina, I.P., Babanin, A.I., Andreev, A.N., Zekentes, K., Semiconductors, 33, 1206 (1999).Google Scholar
14. Vassilevski, K. V., Constantinidis, G., Papanikolaou, N., Martin, N., Zekentes, K., Mat. Sci. & Eng., B61–62, 296 (1999).Google Scholar
15. Vassilevski, K., Zekentes, K., Constantinidis, G., Strel'chuk, A., Solid State Electronics, 44, 1173 (2000).Google Scholar
16. Tager, A. S., Vald-Perlov, V. M., IMPATT diodes and their application in UHF technique (Moscow, Sov. Radio) 1968, p.73 [in Russian].Google Scholar