Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:55:18.881Z Has data issue: false hasContentIssue false

Ionization Energy and Electron Affinity of Clean and Oxidized AlxGa1−xN(0001) Surfaces

Published online by Cambridge University Press:  21 March 2011

H. Nienhaus
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
M. Schneider
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
S.P. Grabowski
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
W. Mönch
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
R. Dimitrov
Affiliation:
Walter-Schottky-Institut, Technische Universität München, D-85748 Garching, Germany
O. Ambacher
Affiliation:
Walter-Schottky-Institut, Technische Universität München, D-85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter-Schottky-Institut, Technische Universität München, D-85748 Garching, Germany
Get access

Abstract

Ionization energies and electron affinities of clean AlxGa1−xN(0001) surfaces were investigated by ultraviolet photoemission spectroscopy over the whole composition range. The samples were cleaned with cycles of N+-ion sputtering and annealing partly within a Ga atom flux. The ionization energy is measured as 6.5 eV and is almost independent of the aluminum content in good agreement with the general chemical trend. The electron affinity decreases linearly with composition from 3.1 eV for GaN to 0.25 eV for AlN. No evidence for negative electron affinity at AlN(0001) surfaces was found. Adsorption of oxygen at room temperature leads to a significant increase of the ionization energy and electron affinity. With AlN(0001) surfaces, an oxygen uptake of 0.6 monolayers is observed after exposures of 108 Langmuirs and the ionization energy increases by approximately 2 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Benjamin, M. C., Bremser, M. D., Weeks, T. W. Jr, King, S. W., Davis, R. F., and Nemanich, R. J., Appl. Surf. Sci. 104/105, 455 (1996); M. C. Benjamin, C. Wang, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 64, 3288 (1994).Google Scholar
2. Grabowski, S.P., Schneider, M., Nienhaus, H., Mönch, W., Dimitrov, R., Ambacher, O., and Stutzmann, M., Appl. Phys. Lett. 78, (2001) (in press).Google Scholar
3. Bermudez, V. M., Jung, T. M., Doverspike, K., and Wickenden, A. E., J. Appl. Phys. 79, 110 (1996).Google Scholar
4. Bermudez, V.M., Wu, C.I., and Kahn, A., J. Appl. Phys. 89 (2001) 1991.Google Scholar
5. Wu, C. I. and Kahn, A., Appl. Phys. Lett. 74, 546 (1999); C. I. Wu, A. Kahn, E. S. Hellman, and D. N. E. Buchanan, ibid. 73, 1346 (1998).Google Scholar
6. Kasu, M. and Kobayashi, N., Appl. Phys. Lett. 76, 2910 (2000).Google Scholar
7. Kozawa, T., Mori, T., Ohwaki, T., Taga, Y., and Sawaki, N., Jpn. J. Appl. Phys., Part 2 39, L772 (2000).Google Scholar
8. Mönch, W., Semiconductor Surfaces and Interfaces, 3rd ed. (Springer, Berlin, 2001) p. 143.Google Scholar
9. Murphy, M.J., Foutz, B.E., Chu, K., Wu, H., Yeo, W., Schaff, W.J., Ambacher, O., Eastman, L.F., Eustis, T.J, Dimitrov, R., Stutzmann, M., and Rieger, W., MRS Internet J. Nitride Semicond. Res. 4S1, G8.4 (1999).Google Scholar
10. Eyckeler, M., Mönch, W., Kampen, T. U., Dimitrov, R., Ambacher, O., and Stutzmann, M., J. Vac. Sci. Technol. B 16, 2224 (1998).Google Scholar
11. Bermudez, V. M., J. Appl. Phys. 80, 1190 (1996).Google Scholar
12. Wu, C. I., Kahn, A., Taskar, N., Dorman, D., and Gallagher, D., J. Appl. Phys. 83, 4249 (1998).Google Scholar
13. Angerer, H.et al., Appl. Phys. Lett. 71, 1504 (1997).Google Scholar
14. Janzen, O., Hahn, Ch., and Mönch, W., Eur. Phys. J. B 9, 315 (1999).Google Scholar