No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
The formation of a Si/IrSi3/Si heterostructure by 1-MeV Ir ion implantation and subsequent annealing has been studied for different doses (0.1-2.25 × 1017 Ir/cm2), substrate temperatures (450°-600°C) and annealing temperatures (1000°-1200°C) using Rutherford backscattering spectrometry, ion channeling and cross-sectional transmission electron microscopy. The heterostructure formation is observed to depend strongly on the processing conditions. The best structure, nearly continuous and precipitate-free, is obtained by implanting 1.8-2.0 × 1017 Ir/cm2 at a substrate temperature of 550°C and annealing at 1100°C for 5 h. A stoichiometric IrSi3 layer can also be produced by furnace annealing at 1150°C for 1 h or by rapid-thermal-annealing at 1200°C for 3 min. Other substrate temperatures generally lead to a structure with a discontinuous IrSi3 layer frequently interrupted by large surface precipitates or islands. The origin of these islands, as well as the dependence of the heterostructure on processing parameters, is discussed.
Present address: Technische Universitat Chemnitz-Zwickau, Postfach 964, 09009 Chemnitz, Germany
Research sponsored by the Division of Materials Science, U. S. Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.