Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:23:56.260Z Has data issue: false hasContentIssue false

The Internal Field Distribution in Light Emitting Electrochemical Cells and Light Emitting Diodes: A Comparative Study

Published online by Cambridge University Press:  21 March 2011

Erik Moderegger
Affiliation:
Institut für Festkärperphysik, Technische Universität Graz, A-8010 Graz, AUSTRIA
Franz P. Wenzl
Affiliation:
Institut für Festkärperphysik, Technische Universität Graz, A-8010 Graz, AUSTRIA
Stefan Tasch
Affiliation:
Institut für Festkärperphysik, Technische Universität Graz, A-8010 Graz, AUSTRIA
Günther Leising
Affiliation:
Institut für Festkärperphysik, Technische Universität Graz, A-8010 Graz, AUSTRIA
Get access

Abstract

We determined the internal electric field distribution in light emitting electro-chemical cells (LECs) and light emitting diodes (LEDs) based on methyl substituted poly(paraphenylen) (mLPPP) by performing electroabsorption measurements as a function of an external bias voltage. Based on these results we outline the working principle of both types of devices. In the case of the LEC we observed an abrupt increase in the EA signal above a threshold voltage of about 2V which we attributed to junction formation due to in-situ electrochemical doping. For single layer LEDs we found the behavior expected for metal/insulator/metal/structures, i.e. the electric field drops linearly over the bulk polymer and no space-charge regions were observed.

These findings are important for improving the performance of organic electroluminescent devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pei, Q., Yu, G., Zhang, C., Yang, Y., and Heeger, A.J., Science 269, 1086 (1995)Google Scholar
2. Pei, Q., Yang, Y., Yu, G., and Heeger, A.J., J. Amer. Chem. Soc. 118, 3922 (1996)Google Scholar
3. Cao, Y., Yu, G., Yang, Y., and Heeger, A.J., Appl. Phys. Lett. 68, 3218 (1996)Google Scholar
4. Campbell, H., Smith, D.L., Neef, C.J., and Ferraris, J.P., Appl. Phys. Lett. 72, 2565 (1998)Google Scholar
5. Li, Y.F., Gao, J., Cao, Y., and Heeger, A.J., Chem. Phys. Lett. 287, 83 (1998)Google Scholar
6. Yu, G., Cao, Y., Zhang, C., Li, Y.F., Gao, J., and Heeger, A.J., Appl. Phys. Lett. 73, 111 (1998)Google Scholar
7. Smith, D.L., J. Appl. Phys. 81, 2869 (1997)Google Scholar
8. Riess, I. and Cahen, D., J.Appl. Phys. 82, 3147 (1997)Google Scholar
9. deMello, J.C., Tessler, N., Graham, S.C., and Friend, R.H., Phys. Rev. B 57, 12951 (1998)Google Scholar
10. Manzanares, J.A., Reiss, H., and Heeger, A.J., J. Phys. Chem. B 102, 4723 (1998)Google Scholar
11. Sampietro, M., Sotgiu, R., Wenzl, F.P., Holzer, L., Tasch, S., and Leising, G., Phys. Rev. B, (1999) (submitted)Google Scholar
12. Tasch, S., Gao, J., Wenzl, F.P., Holzer, L., Scherf, U., Müllen, K., Leising, G., and Heeger, A.J., Electrochem. and Solid state Lett. 2, 303 (1999)Google Scholar
13. Aspnes, D. E. and Rowe, J.E., Phys. Rev. B 5, 4022 (1972)Google Scholar
14. Meinhardt, G., Horvath, A., Weiser, G., and Leising, G., Synth. Met. 84, 669 (1997)Google Scholar
15. Harrison, M.G., Moeller, S., Weiser, G., Urbasch, G., Mahrt, R.F., Bässler, H., and Scherf, U., Phys. Rev. B 60 (12), 8650 (1999)Google Scholar
16. Campbell, I.H., Davids, P.S., Ferraris, J.P., Hagler, T.W., Heller, C.M., Saxena, A., and Smith, D.L., Synth Met. 80 (2), 105 (1996)Google Scholar
17. Gao, J., Heeger, A.J., Campbell, I.H., and Smith, D.L., Phys. Rev. B 59 (4), 2483 (1999)Google Scholar