Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:51:46.833Z Has data issue: false hasContentIssue false

Interaction of Slip with Grain Boundary in the L12 Ordered Structure - a Σ = 9 Tilt Boundary*

Published online by Cambridge University Press:  26 February 2011

M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831–6115
Get access

Abstract

The role of slip/grain boundary interaction in intergranular fracture has been analyzed for a Σ = 9 tilt boundary in L12 ordered alloys by use of the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (111) and the (001) planes for low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with some difficulty, which is eased by localized disordering. Unless a symmetric double pile-up occurs simultaneously, cleavage fracture is predicted to occur on the (111) plane, not intergranular fracture. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. The inherent weakness of grain boundaries in Ni3AI and its improvement by boron segregation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Permanent address: Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275.

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Brown, G. T., Smallman, R. E., and Morris, D. G., Phys. Status Solidi(a) 62, 509 (1980).Google Scholar
2. Schulson, E. M., Weihs, T. P., Baker, I., Frost, H. J., and Horton, J. A., Acta Metall. 34, 1395 (1986).Google Scholar
3. Baker, I., Schulson, E. M., and Horton, J. A., Acta Metall. 35, 1533 (1987).Google Scholar
4. Bond, G. M., Robertson, I. M., and Birnbaum, H. K., J. Mater. Res. 2, 436 (1987).Google Scholar
5. King, A. H. and Yoo, M. H., p. 99 of MRS Symp. Proc. High-Temperature Ordered Intermetallic Alloys II, eds. Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., Materials Research Society, Pittsburgh, PA (1987).Google Scholar
6. Yoo, M. H., Trans. TMS-AIME 245, 2051 (1969).Google Scholar
7. Chou, Y. T. and Li, J.C.M., p. 116 in Mathematical Theory of Dislocations, ed. Mura, T., ASME, New York (1969).Google Scholar
8. Smith, E. andF Barnby, J. T., J. Metall. Sci. 1, 56 (1967).Google Scholar
9. Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).Google Scholar
10. Chen, S. P., Voter, A. F., and Srolovitz, D. J., p. 45 of MRS Symp. Proc. High-Temperature Ordered Intermetallic Alloys, eds. Koch, C. C., Liu, C. T., and Stoloff, N. S., Materials Research Society, Pittsburgh, PA (1987).Google Scholar
11. Aoki, K. and Izumi, O., Nippon Ginzoku Gakkaish, 43, 1190 (1979).Google Scholar
12. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
13. Mackenzie, R.A.D., Vaudin, M. D., and Sass, S. L. in this proceedings.Google Scholar
14. Hanada, S., Ogura, T., Watanabe, S., Izumi, O., and Masumoto, T., Acta Metall. 34, 13 (1986).Google Scholar
15. Farkas, D., Lewus, M. O., and Rangarajan, V., Scr. Metall. (submitted).Google Scholar
16. Yoo, M. H., Horton, J. A., and Liu, C. T., Acta Metall. (submitted).Google Scholar
17. Yoo, M. H. and Trinkaus, H., Acta Metall. 34, 2381 (1986).Google Scholar
18. King, A. H. and Chen, F.-R., J. Mater. Sci. 66, 227 (1984).Google Scholar