Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:09:59.958Z Has data issue: false hasContentIssue false

InGaN/GaN/AlGaN-Based Leds and Laser Diodes

Published online by Cambridge University Press:  10 February 2011

S. Nakamura
Affiliation:
R&D Dept., Nichia Chemical Industries LTD., 491, Oka, Kaminaka, Anan, Tokushima 774-0044, Japan, [email protected]
M. Senoh
Affiliation:
R&D Dept., Nichia Chemical Industries LTD., 491, Oka, Kaminaka, Anan, Tokushima 774-0044, Japan, [email protected]
S. Nagahama
Affiliation:
R&D Dept., Nichia Chemical Industries LTD., 491, Oka, Kaminaka, Anan, Tokushima 774-0044, Japan, [email protected]
N. Iwasa
Affiliation:
R&D Dept., Nichia Chemical Industries LTD., 491, Oka, Kaminaka, Anan, Tokushima 774-0044, Japan, [email protected]
T. Matushita
Affiliation:
R&D Dept., Nichia Chemical Industries LTD., 491, Oka, Kaminaka, Anan, Tokushima 774-0044, Japan, [email protected]
T. Mukai
Affiliation:
R&D Dept., Nichia Chemical Industries LTD., 491, Oka, Kaminaka, Anan, Tokushima 774-0044, Japan, [email protected]
Get access

Abstract

InGaN quantum-well-structure blue LEDs were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. The output power of both LEDs was as high as 6 mW at a current of 20 mA. The LED on sapphire had a considerable amount of leakage current in comparison with that on ELOG. These results indicate that In composition fluctuation is not caused by threading dislocations (TDs), free carriers are captured by radiative recombination centers before they are captured by nonradiative recombination centers in InGaN, and that the dislocations form the leakage current pathway in InGaN. Red LED with an emission peak wavelength of 650 nm was fabricated by increasing the In composition and thickness of InGaN well layer. When the laser diodes (LD) was formed on the GaN layer above the SiO2 mask region, the threshold current density was as low as 3 kAcm-2. When the LD was formed on the window region, the threshold current density was as high as 6 to 9 kAcm-2. There is a possibility that a leakage current due to a large number of TDs caused the high threshold current density on the window region. InGaN multi-quantum-well (MQW) structure LDs grown on the ELOG substrate showed an output power as high as 420 mW under RT-CW operation. The longest lifetime of 9,800 hours at a constant output power of 2 mW was achieved. The InGaN MQW LDs were fabricated on a GaN substrate. The fundamental transverse mode was observed up to an output power of 80 mW.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys., 34, L1332 (1995).Google Scholar
2. Mukai, T., Morita, D., and Nakamura, S., J. Crystal Growth, 189/190, 778 (1998).Google Scholar
3. Mukai, T., Narimatsu, H., and Nakamura, S., Jpn. J. Appl. Phys., 37, L479 (1998).Google Scholar
4. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Y., 1996, Jpn. J. Appl. Phys., 35, L74 (1996).Google Scholar
5. Nakamura, S., and Fasol, G., The Blue Laser Diode, (Springer-Verlag, Heidelberg, 1997).Google Scholar
6. Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett., 66, 1249 (1995).Google Scholar
7. Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A., Jpn. J. Appl. Phys., 36, L899 (1997).Google Scholar
8. Nam, O. H., Bremser, M. D., Zheleva, T., and Davis, R. F., R. F., 1997, Appl. Phys. Lett., 71, 2638 (1997).Google Scholar
9. Mukai, T., Takekawa, K., and Nakamura, S., Jpn. J. Appl. Phys., 37, L839 (1998).Google Scholar
10. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., K., J. Crystal Growth, 189/190, 820 (1998); Appl. Phys. Lett., 72, 211 (1998); Jpn. J. Appl. Phys., 37, L627 (1998).Google Scholar
11. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., K., Jpn. J. Appl. Phys., 37, L309 (1998); Appl. Phys. Lett., 72, 2014 (1998).Google Scholar
12. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett., 69, 4188 (1996).Google Scholar
13. Narukawa, Y., Kawakami, Y., Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B55, 1938R (1997).Google Scholar
14. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
15. Nakamura, S., Science, 281, 956 (1998).Google Scholar
16. Rosner, S. J., Carr, E. C., Ludowise, M. J., Girolami, G., and Erikson, H. I., Appl. Phys. Lett., 70, 420 (1997).Google Scholar
17. Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L. T., and Sakai, S., Jpn. J. Appl. Phys., 37, L398 (1998).Google Scholar
18. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett., 71, 2346 (1997).Google Scholar
19. Sasaoka, C., Sunakawa, H., Kimura, A., Nido, M., Usui, A., and Sakai, A., J. Crystal Growth, 189/190, 61 (1998).Google Scholar
20. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys., 46, 3432 (1975).Google Scholar
21. Amano, H., Takeuchi, T., Sota, S., Sakai, H., and Akasaki, I., Mat. Res. Soc. Symp. Proc., 449, 1143 (1997).Google Scholar
22. McCluskey, M. D., Walle, C. G. Van de, Master, C. P., Romano, L. T., and Johnson, N. M., Appl. Phys. Lett., 72, 2725 (1998).Google Scholar
23. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett., 70, 2822 (1997).Google Scholar
24. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., , Amano, and Akasaki, I., Jpn. J. Appl. Phys., 36, L382 (1997).Google Scholar
25. Nardelli, M. B., Rapcewicz, K., and Bernholc, J., Appl. Phys. Lett., 71, 3135 (1997).Google Scholar
26. Im, J. S., Kollmer, H., Off, I., Sohmer, A., Scholz, F., and Hangleiter, A., Mat. Res. Soc. Symp. Proc., 482, 513 (1998).Google Scholar