Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:24:14.923Z Has data issue: false hasContentIssue false

Influence of the Morphology on the Optical Properties of Nanocermet Films: A Renormalization Approach

Published online by Cambridge University Press:  28 February 2011

S. Berthier
Affiliation:
Laboratoire d'Optique des Solides.Université Pierre et Marie CURIE, 4 place Jussieu, 75230 Paris Cédex 05, France
K. Driss-Khodja
Affiliation:
U.R. en Physique des Solides, Université d'Oran-es-Sénia, Algérie
Get access

Abstract

In order to take into account the actual morphology of the inhomogeneous media, we have developed, effective medium models based on a 2D and 3D position space renormalization /1,2/. These models predict the dipolar resonance and the percolation transition with critical exponents in good agreement with theoretical values and fairly reproduce most of the experimental results, whatever the concentration is. Further more, this allows a valuable comparison of the predictions of our models when applied on different lattices like real digitized TEM of cermet films or randomly occupied lattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Berthier, S., Driss-Khodja, K., Lafait, J., Europhys.Lett. 4 (1987) 1415.Google Scholar
2- Berthier, S., Driss-Khodja, K., Opt. Comm. 70 (1989)29.Google Scholar
3- Kadanoff, L.P., Physics 2 (1966) 263.Google Scholar
4- Yamaguchi, T., Yoshida, S., Kinbara, A., Thin Solid Films 18 (1973) 63.Google Scholar
5- Yamaguchi, T., Yoshida, S., Kinbara, A., Thin Solid Films 21 (1974) 173.Google Scholar
6- Yoshida, S., Yamaguchi, T., Kinbara, A., J. Opt. Soc. Am. 62 (1971) 463.Google Scholar
7- Lafait, J., Berthier, S., Regalado, L.E., SPIE Proc. (1986).Google Scholar
8- Derrida, B., Stauffer, D., Hermann, H.J., Vanimenus, J., J.Phys.Lett. (Paris) 44 (1983) L701.Google Scholar
9- Kirckpatrick, S., Rev. Mod. Phys. 45 (1973) 574.Google Scholar
10- Grannan, D.M., Garland, J.C., Tanner, D.B., Phys. Rev. Lett. 46 (1981) 375.Google Scholar
11- Clerc, J.P., Giraud, G., Roussenq, J., Blanc, R., Carton, J.P., Guyon, E., Ottavi, H., Stauffer, D., Ann. Phys. (Paris) 8 (1981) 375.Google Scholar
12- Berthier, S., Driss-Khodja, K., Lafait, J., J. Phys. (Paris) 48 (1987) 601.Google Scholar
13- Beghdadi, A., Constant, A., Gadenne, P., Lafait, J., Rev. Phys. Appl. 21 (1986) 73.Google Scholar
14- Gadenne, P., Thèse (1987) Université Pierre et Marie Curie - Paris -France.Google Scholar
15- Stauffer, D., Phys. Rep. 54 (1979) 1.Google Scholar
16- Mandelbrot, B. in “Fractal geometry of natureFreeman and Co. (1983).Google Scholar
17- Bruggeman, D.A.G., Ann. Phys. (Leipz) 24 (1935) 636.Google Scholar
18- Sheng, Ping, Phys. Rev. Lett. 45 (1980) 60.Google Scholar