Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T14:40:02.175Z Has data issue: false hasContentIssue false

Incorporation of REE into Secondary Phase Studtite.

Published online by Cambridge University Press:  30 June 2014

C. Palomo*
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40 28040 Madrid, Spain
N. Rodríguez
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40 28040 Madrid, Spain
E. Iglesias
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40 28040 Madrid, Spain
J. Nieto
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40 28040 Madrid, Spain
J. Cobos
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40 28040 Madrid, Spain
J. Quiñones*
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40 28040 Madrid, Spain
Get access

Abstract

The formation of uranyl peroxide phases was identified as a corrosion product of spent fuel by Hanson et al [1]. The subsequent analysis of this phase showed that metastudtite retained 241Am, 237Np and 239Pu [2]. In this study, the retention of radionuclide Pu4+ and An3+, released from the spent fuel matrix into studtite structure, has been evaluated by the precipitation of studtite from uranyl dissolution with variable concentrations of REE (Th, Nd, Sm and Eu). Three different precipitation conditions parameters were studied: media of synthesis, time of synthesis and REE concentration. Synthesized phases were characterized by XRD and the cell parameter was calculated. The REE incorporation was determined by ICP-MS analysis. The results showed that studtite could incorporate 63% of Th in solution during its precipitation. Changes in the “a” cell parameter were identified. The results suggest that studtite coprecipitated with REE could play a role as a limiting for the REE mobility.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hanson, B., et al. ., Radioch. Acta 93 (2005) 159168 CrossRefGoogle Scholar
McNamara, B., et al. ., Radioch. Acta 93 (2005) 169175 CrossRefGoogle Scholar
Shoesmith, D. W., J. Nucl. Mater., 282 (2000) 130 CrossRefGoogle Scholar
Christensen, H. Nucl. Technology 131 (2000) 102123 CrossRefGoogle Scholar
Wronkiewicz, D.J., et al. ., J. Nucl. Mater., 190 (1992) 101106 CrossRefGoogle Scholar
Burns, P.C., et al. ., J. of Nucl. Mater., 245 (1997) 19 CrossRefGoogle Scholar
Buck, E.C., J. Nucl. Mater., 249 (1997) 7076 10.1016/S0022-3115(97)00188-8CrossRefGoogle Scholar
Walenta, K. American Mineralogist, 59 (1974) 166171, 1974Google Scholar
Burns, P.C., et al. ., American Mineralogist, 88(2003) 11651168 CrossRefGoogle Scholar
Douglas, M., et al. ., Environmental Science & Technology 39 ( 2005),, 41174124.10.1021/es0405169CrossRefGoogle Scholar
JCPDS - ICDD -PDF-2 Release_2002. (International Centre for Diffraction Data, 2002).Google Scholar
Laugier, J. and Bernard, B. CELREF. (Laboratoire des Matériaux et du Génie Physique. Ecole Nationale Supérieure de Physique de Grenoble (INPG), 2003).Google Scholar
Curti, E. PSI-Bericht Nr. 97–10 (1997)Google Scholar