Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:16:51.121Z Has data issue: false hasContentIssue false

In Situ TEM Observations of Cross-Slip Mechanisms in NiAl with a Soft Orientation

Published online by Cambridge University Press:  15 February 2011

C. Vailhe
Affiliation:
Virginia Tech., Dept of Materials Eng., Blacksburg, VA 24061, U.S.A.
J. Douin
Affiliation:
LEM - CNRS, ONERA, BP 72, 92322 Châtillon Cedex, France
D. Caillard
Affiliation:
CEMES - CNRS, 29 rue Jeanne Marvig,, BP 4347, 31055 Toulouse Cedex, France
Get access

Abstract

In situ experiments have been conducted in NiAl single crystals in the soft orientation, at room temperature, in order to investigate the glide process of [100] dislocations. The results show that dislocations have a kinked shape in agreement with what is expected from anisotropie elasticity. Intensive cross-slip is observed, leading to slip in non-crystallographic planes and dipole formation. The ductility of the alloy is then discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noebe, R.D., Bowman, R.R., and Nathal, M.V., Int. Materials Reviews, 38, 193 (1993).Google Scholar
2. Miracle, D.B., Acta Metall. Mater., 41, 649 (1993).Google Scholar
3. Field, R.D., Lahrman, D.F., and Darolia, R., Acta Metall. Mater. 39, 2961 (1991).Google Scholar
4. Lahrman, D.F., Field, R.D., and Darolia, R., Mat. Res. Soc. Symp. Proc. 213, 603 (1991).Google Scholar
5. Levit, V.I., Bul, I.A., Hu, J., and Kaufman, M.J., Scripta Met. Mater. 34, 1925 (1996)Google Scholar
6. Darolia, R., Lahrman, D., and Field, R., Scripta Met. Mater. 26, 1007 (1992).Google Scholar
7. Darolia, R., and Waltson, W.S., Intermetallics, 4, 505 (1996).Google Scholar
8. Wasilewski, R.J., Butler, S.R., and Hanlon, J.E., Trans. of the Metall. Soc. of AIME, 239, 1357 (1967).Google Scholar
9. Pascoe, R.T., and Newey, C.W., Phys. Stat. Sol. 29, 357 (1968).Google Scholar
10. Field, R.D., Lahrman, D.F., and Darolia, R., Mat. Res. Soc. Symp. Proc. 213, 255 (1991).Google Scholar
11. Takasugi, T., Kishino, J., and Hanada, S., Acta Metall. Mater. 41, 1021 (1993).Google Scholar
12. Kitano, K., and Pollock, T.M., Structural Intermetallics, Ed. by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V., The Minerals, Metals and Materials Society, p. 591 (1993).Google Scholar
13. Golberg, D., and Sauthoff, G., Intermetallics 4, 143 (1996).Google Scholar
14. Loretto, M.H., and Wasilewski, R.J., Phil. Mag. 23, 1311 (1971).Google Scholar
15. Morris, M.A., Perez, J.P., and Darolia, R., Phil. Mag. A 69, 485 (1994).Google Scholar
16. Lloyd, C.H., and Loretto, M.H., Phys. Stat. Sol. 39, 163 (1970).Google Scholar
17. Glatzel, U., Forbes, K.R., and Nix, W.D., Phil. Mag. A 67, 307 (1993).Google Scholar
18. Wang, L., and Lome, J., Phil. Mag. A 71, 359 (1995).Google Scholar
19. Ball, A., and Smallman, R.E., Acta Met. 14, 1349 (1966).Google Scholar
20. Couret, A., Crestou, J., Farenc, S., Molénat, G., Clément, N., Coujou, A., and Caillard, D., Microsc. Microanal. Microstruct. 4, 153 (1993).Google Scholar
21. Rusovic, N., and Warlimont, H., Phys. Stat. Sol. (a) 44, 609 (1977).Google Scholar
22. Douin, J., Veyssière, P., and Beauchamp, P., Phil. Mag. A 54, 375 (1986).Google Scholar
23. Farkas, D., Pasianot, R., Savino, E.J., and Miracle, D.B., MRS Symp. Proc. 213, 223 (1991).Google Scholar
24. Parthasarathy, T.A., Rao, S.I., and Dimiduk, D.M., Phil. Mag. A 67, 643 (1993).Google Scholar
25. Vailhé, C., and Farkas, D., Mat. Res. Soc. Symp. Proc. 364, 395 (1995).Google Scholar
26. Sun, Y.Q., and Ngan, A.H.W., Phil. Mag. 74, 175 (1996).Google Scholar