Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T03:46:30.143Z Has data issue: false hasContentIssue false

In Situ Infrared Observation of Hydrogenation, Oxidation, And Adsorption On Silicon Surfaces in Solutions

Published online by Cambridge University Press:  03 September 2012

Yoshihiro Sugita
Affiliation:
Fujitsu Laboratories ltd., 10-1 Morinosato-Wakamiya Atsugi, 243-01 Japan, CA 94304
Satoru Watanabe
Affiliation:
Fujitsu Laboratories ltd., 10-1 Morinosato-Wakamiya Atsugi, 243-01 Japan, CA 94304
Get access

Abstract

Fourier transform infrared attenuated total reflection method was employed to observe Si surfaces during wet chemical treatments. We observed the time evolution of the surface chemical structure during the oxidizing of hydrogenated Si surfaces in such oxidants as ozonized water and hydrogen peroxide using (100) and (111) surfaces. We also examined the adsorption of surfactants which were introduced in an HF solution. The interaction of adsorbates at the interface and with molecules in a liquid phase was discussed based on our in situ observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chabal, Y. J., Higashi, G. S. Raghavachari, K. and Burrows, V. A., J. Vac. Sci. Technol. A7 2104 (1989).Google Scholar
2 Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M. andOhwada, M., J. Appl. Phys. 68 1272 (1990).Google Scholar
3 Ohmi, T., Morita, M., Teramoto, A., Makihara, K. and Tseng, K. S., Appl. Phys. Lett. 60 2176 (1992).Google Scholar
4 Nagasawa, Y., Ishida, H., Takahagi, T., Ishitani, A. and Kuroda, H., Solid State Electronics 33, supplement 129 (1990).Google Scholar
5 Gräf, D., Grundner, M. and Schults, R., Vac, J.. Sci. Technol A7 808 (1989).Google Scholar
6 Iijima, E., Aiba, T., Yamauchi, K., Nohira, H., Tabe, T., Katayama, M. and Hattori, T., Extended Abstract of the 1995 International Conference nn Solid State Devices and Materials, Osaka, (Business Center for Academic Societies Japan, Tokyo, 1995) p. 497.Google Scholar
7 Miura, T., Niwano, M., Shoji, D., and Miyamoto, N., J. Appl. Phys. 79 4373 (1996).Google Scholar
8 Fujimura, S., Ogawa, H., Ishikawa, K., Inomata, C. and Mori, H., Extended Abstracts of 1993 International Conference on Solid State Devices and Materials, Makuhari (Business Center for Academic Societies Japan, Tokyo, 1993) p. 618.Google Scholar
9 Watanabe, S., Surf. Sci. 341 304 (1995).Google Scholar
10 Miyamot, M., Kita, N., Ishida, S. and Tatsuno, T., J. Electro. Chem. Soc. 141 2894 (1994).Google Scholar
11 Lucovsky, G., Yang, J., Chao, S.S., Tyler, J.E. and Czubatyji, W., Phys. Rev. B28 3225 (1983).Google Scholar
12 Boonekamp, E. P. Kelly, J. J., Ven, J. and Sondag, A. H. M., J. Appl. Phys. 75 8121 (1994).Google Scholar
13 Hirose, M., Yasaka, T., Takakura, M. and Miyazaki, S., Solid State Technol. Dec. 43 (1991).Google Scholar
14 Sugita, Y. and Watanabe, S., Extended Abstracts of 1996 International Conference on Solid State Devices and Materials, Yokohama (Business Center for Academic Societies Japan, Tokyo, 1996) p. 386.Google Scholar
15 Giguere, P. A. and Turrel, S.: J. Am. Chem. Soc. 102 5473 (1980).Google Scholar