Published online by Cambridge University Press: 15 March 2011
Nanocrystalline materials have demonstrated very interesting changes in physical, chemical and mechanical properties at severely diminished length scales. This article focuses on the topic of nanocrystalline ceramic composites specifically designed for applications requiring improved fracture toughness. The difficulty in producing fully consolidated ceramic composites that retain a nanocrystalline structure is the main hurdle for thorough investigations in this area. This obstacle has been overcome in the current investigation through the use of a fast, comparably lower temperature, sintering technique e.g., Spark Plasma Sintering. Alumina based nanocomposites incorporating carbon nanotubes and additionally incorporating nanocrystalline niobium have yielded fracture toughness values that have exceeded that for pure nanocrystalline alumina by more that 300%. This introduces the question of whether this improvement is merely additive or evidence of a synergistic toughening mechanism involving ductile phase and fiber toughening.