Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:34:38.311Z Has data issue: false hasContentIssue false

The Importance of Grain Boundary Character Distribution to Grain Boundary Design

Published online by Cambridge University Press:  26 February 2011

Tadao Watanabe*
Affiliation:
Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai, 980, Japan
Get access

Abstract

The importance of grain boundary character distribution (GBCD) for the grain boundary design of polycrystalline materials with desirable properties is discussed. The GBCD which describes the type and the frequency of grain boundaries is regarded as the most important microstructural parameter controlling the bulk properties of polycrystals. This parameter can link the bulk properties with intrinsic or extrinsic properties of individual grain boundaries. The recent experimental work on GBCDs in metallic and ceramic polycrystalline materials is discussed. Particularly the relationship between texture and GBCD is discussed in detail in the light of recent studies on several polycrystalline materials with different types of texture. It is pointed out that we are now in a position to quantitatively design and precisely control GBCD in order to endow polycrystalline material with desirable or new properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] McLean, D., Grain Boundaries in Metals, The Clarendon Press (1957).Google Scholar
[2] Gleiter, H., Physical Metallurgy, Chp.10B, pp.649712,Elsevier Sci,(1983).Google Scholar
[3] Walter, J.L., WEstbrook, J.H. and Woodford, D.A., ed., Grain boundaries in Engineering Materials, Claitors' Pub.Div.,Baton Rouge,(1975).Google Scholar
[4] Baker, T.N.,ed.,Yield,Flow and Fracture of Polycrystals, Appl.Sci.Pub,(1983)Google Scholar
[5] Low, J.R. Jr, Trans.Met.Soc.AIME., 245, 2481(1969).Google Scholar
[6] Hondros, E.D. and Seah, M.P., Intern.Metals Review, 262 (1977).Google Scholar
[7] Chadwick, G.A. and Smith, D.A., Grain Boundary Structure and Properties, Academic Press, London,(1976).Google Scholar
[8] Balluffi, R.W., ed., Grain Boundary Structure and Kinetics, ASM, (1980)Google Scholar
[9] Ruhle, M., Balluffi, R.W., Fishmeister, H. and Sass, S.L., Structure and Properties of Internal Interfaces, J.de Phys., 46, (1985).Google Scholar
[10] Proc.JIMIS-4 on Grain Boundary Structure and Related Phenomena, Trans. JIM., suppl.27, (1986).Google Scholar
[11] Watanabe, T., Res Mechanica, 11, pp.4784(1984).Google Scholar
[12] Watanabe, T., Trans.JIM., suppl., 73(1986).Google Scholar
[13] Watanabe, T., Proc.of Intern.Conf.on Interface Sci.Engr., J.de Phys., in press.Google Scholar
[14] Watanabe, T., Materials Forum, Australia Bicentern. Vol., 11 (1988), in press.Google Scholar
[15] Ogura, T., Watanabe, T., Karashima, S. and Masumoto, T., Acat Met., 35, 1807(1987).Google Scholar
[16] Watanabe, T., Takazawa, M. and Oikawa, H., Proc.8thIntern.Con.on Strength of Metals and Alloys, Pergamon Press,(1988), in press.Google Scholar
[17] Fromment, M., J.de Phys., 36,C4371(1975).Google Scholar
[18] Watanabe, T., Met.Trans., 14A, 531(1983).CrossRefGoogle Scholar
[19] Watanabe, T., Proc.3rd Intern.Conf.on Creep and Fracture of Engineering Materials and Structures, The Inst.Metals, pp.155168,(1987).Google Scholar
[20] Watanabe, T., Tanaka, M. and Karashima, S., Embrittlement by Liquid and Solid Metals, ed.by Kamdar, M.H., AIME., pp.183196,(1984).Google Scholar
[21] Tien, J.K. and Ansell, G.S., ed., Alloy and Microstructural Design, Academic Press, (1976).Google Scholar
[22] Smith, C.S., Trans.AIME., 175, 15(1948).Google Scholar
[23] Lim, L.C. and Raj, R., Acta Met., 32,1177(1984).Google Scholar
[24] Wyrzykowski, J.W. and Grabski, M.W., Phil.Mag., A53,505(1986).Google Scholar
[25] Ishida, Y., Mori, M., Arimoto, A. and Onoe, M., Textures of Materials, (ICOTOM-6), vol.1, Japn.Iron Steel Inst., 601(1981).Google Scholar
[26] Watanabe, T., Yoshikawa, N. and Karashima, S., Textures of Materials, JISI., vol.1, 609(1981).Google Scholar
[27] Pumphrey, P.H., Scripta Met., 6, 107(1972).Google Scholar
[28] Watanabe, T., Phil.Mag., 47A, 141(1983).Google Scholar
[29] Ichinose, H. and Ishida, Y., J.de Phys., 46, C439(1985).Google Scholar
[30] Grant, N.J., Frontiers in Materials Technologies, ed.by Meyers, M.A. and Inal, O.T., Elsevier, p.125, (1985).Google Scholar
[31] Fleetwood, M.J., Metals and Materials, 3, 14(1987).Google Scholar
[32] V.Kuo, W.C. and Starke, E.A. Jr, Met.Trans., 16A, 1089(1985).Google Scholar
[33] Williams, J.C. and Starke, E.A., Deformation, Processing and Structure, ASM., p. 279(1984).Google Scholar
[34] Belluz, R.V. and Aust, K.T., Met. Trans., 6A, 219(1975).CrossRefGoogle Scholar
[35] Rybin, V.V., Titovetz, Yu.F., Teplitskiy, D.M. and Yu, N. Zolotorevskiy, Phys. Metals and Metallography, 53, No.3, 122(1982).Google Scholar
[36] Watanabe, T., Suzuki, Y. and Oikawa, H., Reported at Fall Meeting of Japan. Metals, Oct. 1986.Google Scholar
[37] Watanabe, T., Fujii, H., Oikawa, H. and Arai, K.I., Proc.JIMIS-5 on Non-Equilibrium Solid Phases, (1988), in press.Google Scholar
[38] Watanabe, T., Fujii, H., Oikawa, H. and Arai, K.I., submitted to Acta Met.Google Scholar
[39] Watanabe, T., Yoshimi, K., Oikawa, H. and Arai, K.I., unpublished work.Google Scholar
[40] Brandon, D.G., Acta Met., 14, 1479(1966).Google Scholar
[41] Grabski, M.W., J.de Phys., 46, C4567(1985).Google Scholar
[42] Watanabe, T., Kawamata, Y. and Karashima, S., Trans.JIM., suppl. 27, 601(1986).Google Scholar
[43] Randle, V. and Ralph, B., Annealing Processes-Recovery, Recrystallization and Grain Growth, RisW National Lab., p.507, (1986).Google Scholar
[44] Watanabe, T., J. de Phys., 46, C4555(1985).Google Scholar
[45] Don, J. and Majumdar, S., Acta Met., 34, 961(1986).Google Scholar