Published online by Cambridge University Press: 21 March 2011
The ferritic/martensitic steels which are candidates for the first wall of the future fusion reactor are investigated in TEM. While the irradiation doses expected in this reactor are in the range of 100 dpa per year, there is still a lack of knowledge on the nature of the irradiation induced defects for the low doses at which hardening is already occuring. This hardening depends strongly on the type of interaction between the moving dislocations and the defects. The early defects, which start to appear as black dots in TEM, are expected to be either three dimensional clusters of interstitials or vacancies, or dislocation loops. The nature and size of these defects is carefully studied in the F82H steel for doses ranging from about 0.5 dpa to 9 dpa and irradiation temperatures ranging from 40°C to 330°C. For that purpose, various weak beam techniques are explored at the limit of resolution of a TEM used in diffraction mode. Results are presented here for the cases of a 1.7 dpa and a 8.8 dpa irradiation.