Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:29:36.192Z Has data issue: false hasContentIssue false

Hrtem of Extended Defects in Tl-2212 Thin Films

Published online by Cambridge University Press:  15 February 2011

P. P. Newcomer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
E. L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
H. Schöne
Affiliation:
Phillips Laboratory/VTMC, Kirtland AFB, NM 87117
B. L. Doyle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
K. E. Myers
Affiliation:
Dupont Superconductivity, Wilmington, DE 19880
Get access

Abstract

Many applications of high temperature superconductors, HTS, require the presence of lattice defects in the material structure to suppress the motion of magnetic vortices and enhance the critical current density, Jc. The microstructure of Tl2Ba2CaCu2O8-δ (T1–2212) thin films which have extended defects induced by high energy Au and Cu ion irradiation is studied using high resolution transmission electron microscopy, HRTEM, with slow scan digital imaging. In order to optimize the HTS properties and better analyze the consequent microstructural modification, the fluence is varied. At moderate fluences, resulting in ∼4% reduction of the superconducting transition, large enhancements of Jc, and vortex pinning potential are observed. The density and microstructure of isolated defects and surrounding structure will be discussed and compared to damage profiles calculated using the TRIM code. Correlation will be made between the HRTEM results and the changes in HTS properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yeshurun, Y., Malozemoff, A.P., Phys. Rev. Lett. 60 (1988) 2202.Google Scholar
2. Umezawa, A., Crabtree, G. W., Liu, J.Z., Weber, H. W., Kwok, W.K., Nunez, L.H., Moran, T.J., Sowers, C.H., Claus, H., Phys. Rev. B36 (1987) 7151.Google Scholar
3. van Dover, R.B., Gyorgy, E.M., Schneemeyer, L.F., Mitchell, J.W., Rao, K.V., Puzniak, R., Wasczczak, J.V., Nature 342 (1989) 55.Google Scholar
4. Barbour, J.C., Venturini, E.L., Ginley, D.S., Nucl. Instr. & Meth B59/60, 1395 (1991).Google Scholar
5. Barbour, J.C., Venturini, E.L., Ginley, D.S., and Kwak, J.F., Nucl. Instr. & Meth. B65, 531 (1992).Google Scholar
6. Venturini, E.L., Barbour, J.C., Ginley, D.S., Baughman, R.S., Morosin, B., Appl. Phys. Lett. 56 (1990) 2456.Google Scholar
7. Weaver, B.D., Reeves, M.E., Summers, G.P., Soulen, R.J., Olson, W.L., Eddy, M.M., James, T.W., Smith, E.J., Appl. Phys. Lett. 59 (1991) 2600.Google Scholar
8. Newcomer, P.P., Barbour, J.C., Wang, L.M., Venturini, E.L., Kwak, J.F., Ewing, R.C., Miller, M.L., Morosin, B., Physica C 267 (1996) 243.Google Scholar
9. Civale, L., Marwick, A.D., Worthington, T.K., Kirk, M.A., Thompson, J.R., Krusin-Elbaum, L., Sun, J., Clem, J.R., Holtzberg, F., Phys. Rev. Lett. 67 (1991)648.Google Scholar
10. Konczykowski, M., Rullier-Albenque, F., Jacoby, E.R., Shaulov, A., Yeshurun, J., Lejay, P., Phys. Rev. B44 (1991) 7167.Google Scholar
11. Zhu, Y., Cai, Z.X., Budhani, R.C., Suenaga, M., Welch, D.O., Phys. Rev. B48 (1993) 6436.Google Scholar
12. Hardy, V., Groult, D., Provost, J., Hervieu, M., Raveau, B., Bouffard, S., Phycia C 178 (1991) 255.Google Scholar
13. Wahl, A., Hervieu, M., Van Tendeloo, G., Hardy, V., Provost, J., Groult, D., Simon, Ch., Raveau, B., Radiation Effects and Defects in Solids 133 (1995) 293.Google Scholar
14. Budhani, R.C., Holstein, W.L., Suenaga, M., Phys. Rev. Lett. 72 (1994) 566.Google Scholar
15. Budhani, R.C., Suenaga, M., Liou, S.H., Phys. Rev. Lett. 69(26) (1992) 3816.Google Scholar
16. Venturini, E.L., Newcomer, P.P., Schöne, H., Doyle, B.L., Myers, K.E., Proceedings of the 1996 IBMM (1996).Google Scholar
17. Holstein, W.L., Wilker, C., Laubacher, D.B., Face, D.W., Pang, P., Warrington, M.S., Carter, C.F., Parisi, L.A., J. Appl. Phys. 74 (1993) 1426.Google Scholar
18. Lauder, A., Wilker, C., Kountz, D.J., Holstein, W.L., Face, D.W., IEEE Trans. Appl. Supercond. 3 (1993) 1683.Google Scholar
19. Biersack, J., Haggmark, L., Nucl. Instr. And Meth. Vol.174 (1980) andZiegler, J., Vol. 2–6 Pergamon Press, 1977-1980.Google Scholar
20. Houpert, C., Studer, F., Groult, D., Toulemonde, M., Nucl. Instrum. Methods B39 (1989) 720.Google Scholar
21. F. Studerand Toulemonde, M., Nucl. Instr. and Meth. B65 (1992)560.Google Scholar
22. Meftah, A., Brisard, F., Constantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., Toulemonde, M., Phys. Rev. B48 (1993) 920.Google Scholar
23. Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schnemieyer, L.F. and Waszczak, J.V., Appl. Phys. Lett. 55 (1989) 283.Google Scholar
24. Provost, J., Simon, Ch., Hervieu, M., Groult, D., Hardy, V., Studer, F., Toulemonde, M., MRS Bulletin (1995) 22.Google Scholar