Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:23:13.546Z Has data issue: false hasContentIssue false

How Surface Roughening and Dislocation Formation Mutually Influence Each Other During Heteroepitaxial Growth

Published online by Cambridge University Press:  15 February 2011

Silke Christiansen
Affiliation:
Universität Erlangen–Nürnberg, Institut für Werkstoffwissenschaften, LS VII, D-91058 Erlangen, F.R.G.
M. Albrecht
Affiliation:
Universität Erlangen–Nürnberg, Institut für Werkstoffwissenschaften, LS VII, D-91058 Erlangen, F.R.G.
H. Michler
Affiliation:
Universität Erlangen–Nürnberg, Institut für Werkstoffwissenschaften, LS VII, D-91058 Erlangen, F.R.G.
H.P. Strunk
Affiliation:
Universität Erlangen–Nürnberg, Institut für Werkstoffwissenschaften, LS VII, D-91058 Erlangen, F.R.G.
Get access

Abstract

Using finite elements we quantitatively calculate the inhomogeneous strain distribution associated with the so called crosshatch pattern. This pattern is a twodimensional, pseudoregular surface undulation that generally arises as an intermediate stage of heteroepitaxial growth of low misfitting semiconductor layers. This stage is characterized by an interplay of elastic and plastic relaxation processes. The calculations yield (i) the elastic strain energy density distribution and corresponding degree of elastic relaxation and (ii) the shear stress distribution in the glide system, in which misfit dislocations form. As a main result shear stresses due to the crosshatch pattern within the substrate are identified that cause misfit dislocations to multiply in the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grinfeld, M.A., Dokl.Akad.Nauk SSR, 290, 1358 (1986)Google Scholar
[2] Spencer, B.J., Voorhees, P.W., Davis, S.H., J.Appl.Phys. 73, 4955 (1993)Google Scholar
[3] Srolovitz, D., Acta Met. 37, 621 (1989)Google Scholar
[4] Matthews, J.W., Blakeslee, A.E., J.Cryst.Growth 27, 118 (1974)Google Scholar
[5] Tersoff, J., LeGoues, F.K., Phys.Rev.Lett. 72, 3570 (1994)Google Scholar
[6] Christiansen, S., Albrecht, M., Strunk, H.P., Hansson, P.O., Bauser, E., Appl.Phys.Lett. 66, 574 (1995)Google Scholar
[7] Albrecht, M., Christiansen, S., Michler, J., Dorsch, W., Hansson, P.O., Strunk, H.P., Bauser, E., Appl.Phys.Lett. submittedGoogle Scholar
[8] Cullis, A.G., Robbins, D.J., Pidduck, A.J., Smith, P.W., J.Cryst.Growth 123, 333 (1992)Google Scholar
[9] Albrecht, M., Christiansen, S., Michler, J., Strunk, H.P., Hansson, P.O., Bauser, E., Microsc. Semicond. Mater. Conf., Oxford, March 1995, acceptedGoogle Scholar
[10] Albrecht, M., Christiansen, S., Michler, J., Hansson, P.O., Strunk, H.P., Bauser, E., J.Cryst.Growth submittedGoogle Scholar
[11] MARC Analysis Research Corp., Vol A/ user information manual, Palo Alto 1992 Google Scholar
[12] Lefebvre, A., Herbeaux, C., Bouillet, C., DiPersio, J., Phil.Mag.Lett. 63, 23 (1991)Google Scholar
[13] LeGoues, F.K., Meyerson, B.S., Morar, J.F., Kirchner, P.D., J.Appl.Lett. 71, 4230 (1992)Google Scholar
[14] Shiryaev, S.Y., Phil.Mag.Lett. 68, 195 (1993)Google Scholar
[15] Christiansen, S., Albrecht, M., Michler, J., Strunk, H.P., J.Appl.Phys. submittedGoogle Scholar
[16] Eaglesham, D.J., Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990)Google Scholar
[17] Chisholm, M.F., oral presentation at the 1994 MRS Fall Meeting, Boston, MA Google Scholar
[18] Snyder, C.W., Orr, B.G., Kessler, D., Sander, L.M., Phys.Rev.Lett. 66, 3032 (1991)Google Scholar
[19] Albrecht, M., Christiansen, S., Strunk, H.P., phys.stat.sol. submittedGoogle Scholar