Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T13:51:50.589Z Has data issue: false hasContentIssue false

Homo- and Hetero-Epitaxial Gallium Nitride Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

C.T. Foxon
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, England
T.S. Cheng
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, England
D. Korakakis
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, England School of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, England
S.V. Novikov
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, England Ioffe Physical-Technical Institute, St. Petersburg, 194021, Russia
R.P. Campion
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, England
I. Grzegory
Affiliation:
High Pressure Research Center Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
S. Porowski
Affiliation:
High Pressure Research Center Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
M. Albrecht
Affiliation:
Institute of Materials Science VII, University of Erlangen-Numberg, Cauerstrasse 6, 91058 Erlangen, Germany
H.P. Strunk
Affiliation:
Institute of Materials Science VII, University of Erlangen-Numberg, Cauerstrasse 6, 91058 Erlangen, Germany
Get access

Abstract

Various methods have been used to initiate growth by Molecular Beam Epitaxy (MBE) of GaN on sapphire, or other substrates, but there is always a problem with morphology and with a high defect density which results in the formation of a sub-grain boundary structure. We show that by using, homo-epitaxial growth on properly prepared bulk GaN substrates, combined with high temperature growth, we obtain a significant improvement in surface morphology. Growth at sufficiently high temperature leads to a rapid smoothing of the surface and to almost atomically flat surfaces over relatively large areas. Multi-Quantum Well structures grown on such GaN epitaxial films are dislocation free with abrupt interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[2] Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S.I., Yamada, T. and Mukai, T., Jpn. J. Appl. Phys. 34, L1332 (1995).Google Scholar
[3] Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S.I., Iwasa, N., Yamada, T., Matsushita, T., Sugimto, Y. and Kiyoku, H., Appl. Phys. Lett. 70, 1417 (1997).Google Scholar
[4] Fan, Z., Mohhammad, S. N., Aktas, O., Botchkarev, A. E., Salvador, A. and Morkoq, H., Appl. Phys. Lett., 69, 1229 (1996).Google Scholar
[5] Stevens, K. S., Kinniburgh, M. and Beresford, R., Appl. Phys. Lett. 66, 3518 (1995).Google Scholar
[6] Sanchez-Garcia, M. A., Calleja, E., Monroy, E., Sanchez, F. J., Calle, F., Munoz, E. and Beresford, R., J. Cryst. Growth 183, 23 (1998).Google Scholar
[7] Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M. S., Skowronski, M., Neugebauer, J. and Northrup, J. E., Appl. Phys. Lett., 72, 2114 (1998).Google Scholar
[8] Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J. and Northrup, J. E., Phys. Rev. Lett., 79, 3934 (1997).Google Scholar
[9] Lester, S. D., Ponce, F. A., Craford, M. G., Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
[10] Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L. T. and Sakai, S., Jpn. J. Appl. Phys. 37, L398 (1998).Google Scholar
[11] Sugiura, L., J. Appl. Phys. 81, 1633, (1997).Google Scholar
[12] Ng, H. M., Doppalapudi, D., Moustakas, T. D., Weimann, N. G. and Eastman, L. F., Appl. Phys. Lett. 73, 821 (1998).Google Scholar
[13] Weyher, J. L., Muller, S., Grzegory, I., and Porowski, S., J. Cryst. Growth, 182, 17 (1997).Google Scholar
[14] Hooper, S. E., Foxon, C. T., Cheng, T. S., Jenkins, L. C., Lacklison, D. E., Orton, J. W., Benswick, T., Kean, A., Dawson, M., Duggan, G., J. Cryst. Growth 155, 157 (1995).Google Scholar
[15] Held, R., Seutter, S. M., Ishaug, B. E., Parkhomovsky, A., Dabiran, A. M., Cohen, P. I., Nowak, G., Grzegory, I., and Porowski, S., to be published.Google Scholar
[16] Matsuoka, T., Yoshimoto, N., Sasaki, T., and Katsui, A., J. Electron. Mater. 21, 157 (1992).Google Scholar
[17] Moustakas, T. D., Lei, T., and Molnar, R. J., Physica B 185, 36 (1993).Google Scholar
[18] Grandjean, N., Massies, J., Leroux, M., Appl. Phys. Lett. 69, 2071 (1996).Google Scholar
[19] Tews, H., Averbeck, R., Graber, A., and Riechert, H., Electron Lett. 32, 2004 (1996).Google Scholar
[20] Teisseyre, G., Nowak, G., Leszczynski, M., Grzegory, I., Bockowski, M., Krukowski, S., Porowski, S., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K.J., Karczewski, G., MRS Internet J. Nitride Semicond. Res. 1, 13 (1996).Google Scholar
[21] Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K.J., Teisseyre, H., Nowak, G., Leszczynski, M., Grzegory, I., Bockowski, M., Krukowski, S., Lucznik, B., Porowski, S., Karczewski, G., Jpn. J. Appl. Phys. 36, L1634 (1997).Google Scholar