Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:07:18.302Z Has data issue: false hasContentIssue false

High-temperature thermoelectric properties of W-substituted CaMnO3

Published online by Cambridge University Press:  01 February 2013

Dimas S. Alfaruq
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
James Eilertsen
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
Philipp Thiel
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
Myriam H Aguirre
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
Eugenio Otal
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
Sascha Populoh
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
Songhak Yoon
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
Anke Weidenkaff*
Affiliation:
Empa, Solid State Chemistry and Catalysis, Ueberlandstrasse. 129, CH-8600 Duebendorf, Switzerland
*
*Corresponding Author: [email protected]
Get access

Abstract

The thermoelectric properties of W-substituted CaMn1-xWxO3-δ (x = 0.01, 0.03; 0.05) samples, prepared by soft chemistry, were investigated from 300 K to 1000 K and compared to Nb-substituted CaMn0.98Nb0.02O3-δ. All compositions exhibit both an increase in absolute Seebeck coefficient and electrical resistivity with temperature. Moreover, compared to the Nb-substituted sample, the thermal conductivity of the W-substituted samples was strongly reduced. This reduction is attributed to the nearly two times greater mass of tungsten. Consequently, a ZT of 0.19 was found in CaMn0.97W0.03O3-δ at 1000 K, which was larger than ZT exhibited by the 2% Nb-doped sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rowe, D. M. Thermoelectrics Handbook - Macro to Nano; CRC Press/Taylor & Francis Group: Boca Raton, 2006.Google Scholar
Funahashi, R.; Kosuga, A.; Miyasou, N.; Takeuchi, E.; Urata, S.; Lee, K.; Ohta, H.; Koumoto, K. Appl. Phys. Lett 2007, p 124.Google Scholar
Wang, Y.; Sui, Y.; Wang, X.; Su, W.; Liu, X.; Fan, H. J. Acta Mater. 2010, 58, 6306.CrossRefGoogle Scholar
Bocher, L.; Aguirre, M. H.; Logvinovich, D.; Shkabko, A.; Robert, R.; Trottmann, M.; Weidenkaff, A. Inorg. Chem. 2008, 47, 8077.CrossRefGoogle Scholar
Lebail, A.; Duroy, H.; Fourquet, J. L. Mater. Res. Bull. 1988, 23.Google Scholar
Rodriguez-Carvajal, , J. Physica B 1993, 192, 55.CrossRefGoogle Scholar
Poeppelmeier, K. R.; Leonowicz, M. E.; Scanlon, J. C.; Longo, J. M.; Yelon, W. B. Journal of Solid State Chem. 1982, 45.Google Scholar
Aguirre, M. H.; Canulescu, S.; Robert, R.; Homazava, N.; Logvinovich, D.; Bocher, L.; Lippert, T.; Dobeli, M.; Weidenkaff, A. J. Appl. Phys. 2008, 103, 013703.CrossRefGoogle Scholar
Aguirre, M.H., , D. L., Bocher, L., Robert, R., Ebbinghaus, S.G. and Weidenkaff, A. Acta Mater. 2008 57, 108.CrossRefGoogle Scholar
Zener, C. Phys. Rev. 1951, 82, 403.CrossRefGoogle Scholar
Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A. J. Solid State Chem. 2000, 149, 203.CrossRefGoogle Scholar
Horiguchi, K. I.; Teduka, Y.; Sugihara, S. Funtai Oyobi Fummatsu Yakin/ J. Japan Soc.. of Powder and Powder Metall. 2007, 54, 351.CrossRefGoogle Scholar
Wang, Y.; Sui, Y.; Fan, H.; Wang, X.; Su, Y.; Su, W.; Liu, X. Chem.Mater. 2009, 21, 4653.CrossRefGoogle Scholar
Maignan, A.; Martin, C.; Autret, C.; Hervieu, M.; Raveau, B.; Hejtmanek, J. J. Mater. Chem. 2002, 12, 1806.CrossRefGoogle Scholar