Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:44:33.229Z Has data issue: false hasContentIssue false

Growth of Si1-x.Snx Layers on Si by Ion-Beam-Induced Epitaxial Crystallization (Ibiec) and Solid Phase Epitaxial Growth (Speg)

Published online by Cambridge University Press:  21 February 2011

N. Kobayashi
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan
M. Hasegawa
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan
N. Hayashi
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan
H. Katsumata
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan Meiji University, 1–1–1 Higashimita, Tama, Kawasaki, Kanagawa 214, Japan
Y. Makita
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan
H. Shibata
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan
S. Uekusa
Affiliation:
Meiji University, 1–1–1 Higashimita, Tama, Kawasaki, Kanagawa 214, Japan
Get access

Abstract

Synthesis of metastable group-IV binary alloy semiconductor thin films on Si was achieved by the crystalline growth of Si1-xSnx layers using Sn ion implantation into Si(100) followed either by ion-beam-induced epitaxial crystallization (IBIEC) or solid phase epitaxial growth (SPEG). Si(100) wafers were implanted at room temperature with 110keV 120Sn ions to a dose of 1×1016 cm-2 (x=0.029 at peak concentration) and 2x1016 cm-2 (x=0.058 at peak concentration). By this process about 90nm-thick amorphous Si1-xSnx and about 30nm-thick deeper amorphous Si layers were formed. IBIEC experiments performed with 400keV Ar ions at 300–400°C have induced an epitaxial crystallization of the amorphous alloy layers up to the surface and lattice site occupation of Sn atoms for samples with the lower Sn concentration (LC). XRD analyses have revealed a partial strain compensation for the crystallized layer. Samples with the higher Sn concentration (HC) have shown an epitaxial crystallization accompanied by defects around the peak Sn concentration. SPEG experiments up to 750°C for LC samples have shown an epitaxial crystallization of the fully strained alloy layer, whereas those for HC samples up to 750°C have revealed a collapse of the epitaxial growth around the interface of the alloy layer and the Si substrate. Photoluminescence (PL) emission from both IBIEC-grown and SPEG-grown samples with the lower Sn concentration has shown similar peaks to those by ion-implanted and annealed Si samples with intense I1 or I1-related (Ar) peaks. Present results suggest that IBIEC has a feature for the non-thermal equilibrium fabrication of Si-Sn alloy semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Soref, R.A., J. Appl. Phys. 72, 626 (1992).Google Scholar
2 Soref, R.A., J. Appl. Phys. 70, 2470 (1991).Google Scholar
3 Furukawa, S., Etoh, H., Ishizawa, A. and Shimada, T., U.S. Patent No. 4885614 (1989).Google Scholar
4 Eberl, K., Iyer, S.S., Zollner, S., Tsang, J.C. and LeGoues, F. K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
5 Binary Alloy Phase Diagrams, edited by Massalski, T.B., Murray, J.L., Bennett, L.H. and Baker, H., (American Society for Metals, 1986).Google Scholar
6 Thornton, R.P., Elliman, R.G. and Williams, J.S., J. Mater. Res. 5, 1003 (1990).Google Scholar
7 Kobayashi, N., Hasegawa, M., Hayashi, N., Tanoue, H., Shibata, H. and Makita, Y., Nucl. Instrum. Methods B (1995) (in press).Google Scholar
8 Kobayashi, N., Katsumata, H., Makita, Y., Hasegawa, M., Hayashi, N., Shibata, H. Uekusa, S. and Hishita, S., Mat. Res. Soc. Symp. Proc. 388, 189 (1995).Google Scholar
9 Paine, D.C., Howard, D.J., Stoffel, N.G. and Horton, J.A., J. Mater. Res. 5, 1023 (1990).Google Scholar
10 Hayashi, N., Suzuki, R., Hasegawa, M., Kobayashi, N., Tanigawa, S. and Mikado, T., Phys. Rev. Lett. 70, 45 (1993).Google Scholar
11 Kirkpatrick, C.G., Noonan, J. R. and Streetman, B.G., Rad. Effects 30, 97 (1976).Google Scholar
12 Davies, G., Phys. Rep. 176, 83 (1989).Google Scholar
13 Lee, Y.H. and Corbett, J.W., Phys. Rev. B 9, 4351 (1974).Google Scholar
14 Burger, N., Thonke, K. and Sauer, R., Phys. Rev. Lett. 52, 1645 (1984).Google Scholar
15 O'Donnell, K. P., Lee, K.M. and Watkins, G.D., Physica 116B, 258 (1983).Google Scholar
16 Weber, J. and Singh, M., Appl. Phys. Lett. 49, 1617 (1986).Google Scholar