Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:00:48.535Z Has data issue: false hasContentIssue false

Growth of Iii-Nitrides by Rf-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

E. C. Piquette
Affiliation:
Watson Laboratories of Applied Physics 128-95 California Institute Of Technology, Pasadena, California 91125
P. M. Bridger
Affiliation:
Watson Laboratories of Applied Physics 128-95 California Institute Of Technology, Pasadena, California 91125
Z. Z. Bandić
Affiliation:
Watson Laboratories of Applied Physics 128-95 California Institute Of Technology, Pasadena, California 91125
T. C. Mcgill
Affiliation:
Watson Laboratories of Applied Physics 128-95 California Institute Of Technology, Pasadena, California 91125
Get access

Abstract

GaN, AlGaN, AIN were grown on (0001) A1203 substrates by MBE using a RF plasma source and employing an AIN buffer layer. The films were characterized by RHEED, AFM, and x-ray diffraction, and electrical properties were measured by Hall technique. RHEED observations indicate that the polarity of the films is likely predominantly N-face, although Ga-face inversion domains can be observed in some films by AFM. Symmetric x-ray rocking curve widths as low as 39 arcseconds are achieved for some layers, while asymmetric peaks show widths of 240–300 arcsec. Control of Si doping over a wide range is demonstrated, which is important for design of high power device structures. Gold Schottky barrier m-v-n+diodes were fabricated which achieve high reverse electric fields before edge breakdown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bandić, Z. Z., Piquette, E. C., Bridger, P. M., Kuech, T. F., and McGill, T. C., Mat. Res. Soc. Symp. Proc. 483 399 (1998).Google Scholar
[2] Bandić, Z. Z., Bridger, P. M., Piquette, E. C., Beach, R. A., Kuech, T. F., and McGill, T. C., accepted for publication in Solid State Electronics.Google Scholar
[3] Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J., and Northrup, J. E., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar
[4] Wu, X. H., Kapolnek, D., Tarsa, E. J., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., Baars, S. P. Den, and Speck, J. S., Appl. Phys. Lett. 68, 1371 (1996).Google Scholar
[5] Daudin, B., Widmann, F., Feuillet, G., Samson, Y., Arlery, M., and Rouviere, J. L., Phys. Rev. B 56, 7069 (1997).Google Scholar
[6] Romano, L. T., and Myers, T. H., Appl. Phys. Lett. 71, 3486 (1997).Google Scholar
[7] Seelmann-Eggebert, M., Weyher, J. L., Obloh, H., Zimmermann, H., Rar, A., ans Porowski, S.. Appl. Phys. Lett. 71, 2635 (1997).Google Scholar
[8] Kobayashi, J. T., Kobayashi, N. P., and Dapkus, P. D., J. Electron. Mater. 26, 1114 (1997).Google Scholar
[9] Metzger, T., Höpler, R., Born, E., Christiansen, S., Albrecht, M., Strunk, H. P., Ambacher, O., Stutzmann, M., Stömmer, R., Schuster, M., and Göbel, H., Phys. Stat. Sol. (a) 162, 529 (1997).Google Scholar
[10] Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., Baars, S. P. Den, and Mishra, U. K., Appl. Phys. Lett. 71, 1204 (1997).Google Scholar
[11] Nam, O.-H., Bremser, M. D., Zheleva, T. S., and Davis, R. F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
[12] Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons, New York, 1981), p. 105.Google Scholar
[13] Baliga, B. J., Power Semiconductor Devices, (PWS Publishing Company, Boston, 1996), p. 148.Google Scholar