Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:33:05.747Z Has data issue: false hasContentIssue false

Growth of Epitaxial CoSi2/Si Multilayers

Published online by Cambridge University Press:  26 February 2011

B. D. Runt
Affiliation:
General Electric Corporate Research and Development Center, P.O. Box 8, Schenectady, NT 12301
N. Lewis
Affiliation:
General Electric Corporate Research and Development Center, P.O. Box 8, Schenectady, NT 12301
L. J. Schotalter
Affiliation:
General Electric Corporate Research and Development Center, P.O. Box 8, Schenectady, NT 12301
E. L. Hall
Affiliation:
General Electric Corporate Research and Development Center, P.O. Box 8, Schenectady, NT 12301
L. G. Turner
Affiliation:
General Electric Corporate Research and Development Center, P.O. Box 8, Schenectady, NT 12301
Get access

Abstract

Epitaxial CoSi2/Si multilayers have been grown on Si(111) substrates with up to four bilayers of suicide and Si. To our knowledge, these are the first reported epitaxial metal-semiconductor multilayer structures. The growth of these heterostructures is complicated by pinhole formation in the suicide layers and by nonuniform growth of Si over the suicide films, but these problems can be controlled through nse of proper growth techniques. CoSi2 pinhole formation has been significantly reduced by utilizing a novel solid phase epitaxy technique in which room-temperature-deposited Co/Si bilayers are annealed to 600–650δC to form the suicide layers. Islanding in the Si layers is minimized by depositing a thin (<100Å) Si layer at room temperature with subsequent high temperature growth of the remainder of the Si. Cross-sectional transmission electron microscopy studies demonstrate that these growth procedures dramatically improve the continuity and quality of the CoSi. and Si multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saitoh, S., Jshiwara, H., and Furukawa, S., Appl. Phys. Lett. 37, 203 (1980).CrossRefGoogle Scholar
2. Bean, J.C. and Poate, J.M., Appl. Phys. Lett. 37, 643 (1980).CrossRefGoogle Scholar
3. Tong, R.T., Bean, J.C., Gibson, J.M., Poate, J.M., and Jacobson, D.C., Appl. Phys. Lett. 40, 684 (1982).CrossRefGoogle Scholar
4. Hunt, B.D., Lewis, N., Hall, E.L., Turner, L.G., Schowalter, L.J., Okamoto, Masako, and Hashieoto, Shin, Mat. Res. Soc. Symp. Proc. 56, 151 (1986).CrossRefGoogle Scholar
5. Tung, R.T., Levi, A.F.J., and Gibson, J.M., Appl. Phys. Lett. 48. 635 (1986).CrossRefGoogle Scholar
6. Rosencher, E., Badoz, P.A., Pfister, J.C., Arnaud d'Avitaya, F., Vincent, G., and Delage, S., Appl. Phys. Lett. 49, 271 (1986).CrossRefGoogle Scholar
7. Ishibashi, K. and Furukawa, S., Jpn. J. Appl. Phys. 24, 912 (1985).CrossRefGoogle Scholar
8. Ditchek, B.M., Salerno, J.P., and Gormley, J.V., Appl. Phys. Lett. 47, 1200 (1985).CrossRefGoogle Scholar
9. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).CrossRefGoogle Scholar
10. Chrenko, R.M., Schowalter, L.J., Hall, E.L., and Lewis, N., Mat. Res. Soc. Symp. Proc. 56, 27 (1986).CrossRefGoogle Scholar
11. Hunt, B.D., Lewis, N., Hall, E.L., and Robertson, C.D., to be published in J. Vac. Sci. Technol. (May/June, 1987).Google Scholar
12. Pirri, C., Peruchetti, J.C., Gewinner, G., and Boliiont, D., Solid State Comm., 57 361 (1986).CrossRefGoogle Scholar
13. Fathauer, R.W., Schowalter, L.J., Lewis, N., and Hall, E.L., Mat. Res. Soc. Syep. Proc. 54, 313 (1986).CrossRefGoogle Scholar
14. Hunt, B.D., Lewis, N., Schowalter, L.J., and Hall, E.L., to be submitted to J. Appl. Phys.Google Scholar