Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T13:34:46.417Z Has data issue: false hasContentIssue false

Growth of Carbon Nanotubes with Controlled Morphologies

Published online by Cambridge University Press:  01 February 2011

Lifeng Dong
Affiliation:
Physics Department, Portland State University, Portland, OR 97207-0751, U.S.A.
Jun Jiao
Affiliation:
Physics Department, Portland State University, Portland, OR 97207-0751, U.S.A.
Catherine L. Mosher
Affiliation:
Physics Department, Portland State University, Portland, OR 97207-0751, U.S.A.
Sean Foxley
Affiliation:
Physics Department, Portland State University, Portland, OR 97207-0751, U.S.A.
Get access

Abstract

The alignment, orientation and morphologies of multi-walled carbon nanotubes (MWNTs) can be tailored by controlling catalyst deposition on porous silicon substrates. During the growth of MWNTs, H2 promoted the growth of carbon nanotubes and prevented the formation of amorphous carbon particles. With the introduction of H2, the average diameter of MWNTs decreased from 130 nm to 15 nm, and the average growth rate of nanotubes increased from 50 nm/s to 145 nm/s. The use of CH4 as the carbon source resulted in single-walled carbon nanotubes (SWNTs) with an average diameter of 2 nm, and the use of C2H2 as the carbon source resulted in MWNTs with an average diameter of 15 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Collins, P.G., Arnold, M.S., Avouris, P., Science 292, 706 (2001).Google Scholar
2. Normile, D., Science 286, 2056 (1999).Google Scholar
3. Odom, T.W., Huang, J., Kim, P. and Lieber, C.M., Nature 391, 62 (1998).Google Scholar
4. Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. and Dekker, C., Nature 391, 59 (1998).Google Scholar
5. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P. and Provencio, P.N., Science 282, 1105 (1998).Google Scholar
6. Cassell, A. M., Franklin, N. R., Tombler, T. W., Chan, E. M., Han, J., and Dai, H. J., J. Am. Chem. Soc. 121, 7975 (1999).Google Scholar
7. Dong, L.F., Jiao, J., Foxley, S., Tuggle, D.W., and Mosher, C.L., J. of Nanosci. and Nanotech. 2(2), (2002).Google Scholar
8. Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).Google Scholar
9. Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H.J., J. Phys. Chem. B 103, 6484(1999).Google Scholar
10. Jiao, J., Nolan, P. E., Seraphin, S., Cutler, A. H. and Lynch, D. C., J. Electrochem. Soc. 143, 932 (1996).Google Scholar
11. Jiao, J. and Seraphin, S., Journal of Physics and Chemistry of Solids 61, 1055 (2000).Google Scholar
12. Dai, H.J., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 260, 471 (1996).Google Scholar
13. Satishkumar, B.C., Govindaraj, A., Sen, R., and C.Rao, N.R., Chem. Phy. Lett. 293, 47 (1998).Google Scholar
14. Colomer, J.F., Bister, G., Willems, I., Konya, Z., Fonseca, A., Tendeloo, G.W., and Nagy, J.B., J. Chem. Soc., Chem. Commun. 1343 (1999).Google Scholar