Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:38:24.560Z Has data issue: false hasContentIssue false

GaN based quantum dot heterostructures

Published online by Cambridge University Press:  15 March 2011

M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284-3072, E mail: [email protected]
J. Cui
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284-3072, E mail: [email protected]
F. Yun
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284-3072, E mail: [email protected]
A. Baski
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284-3072, E mail: [email protected]
M. I. Nathan
Affiliation:
On leave from University of Minnesota, Minneapolis, MN
Hadis Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284-3072, E mail: [email protected]
Get access

Abstract

GaN dots have been grown on c-plane sapphire and (111) Si substrates by reactive molecular beam epitaxy. A new method involving two-dimensional growth followed by a controlled annealing during which dots are formed was employed. Due the dot nature and large dot density, relatively high luminescence efficiencies were obtained on both substrates. Single layer dots were used for AFM analysis whereas 30 layer dots were used for photoluminescence experiments. AlN barrier layers, some too thick for mechanical interaction, some thin enough for vertical coupling were used. Strong polarization effects lead to a sizeable red shift, which depends on the size of the dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S.T. and Morkoç, H., J. Vacuum Science Technology, 10, 1237 (1992).Google Scholar
2. Morkoç, H., Strite, S., Gao, G. B., Lin, M.E., Sverdlov, B., and Burns, M., J. Appl. Phys. Rev., 76, 1363 (1994).Google Scholar
3. Mohammad, S. N. and Morkoç, H., Progress in Quantum Electronics, PQE 20, 361525, (1996), a monogram.Google Scholar
4. Group III Nitride semiconductor Compounds, Edited by Gil, B., Clarendon Press, Oxford (1998) ISBN 0-19-850159-5.Google Scholar
5. Morkoç, H., “Nitride Semiconductors and Devices”, Springer Verlag, 1999.Google Scholar
6. Nakamura, S., and Fosol, G., Spinger Verlag, 1997.Google Scholar
7. Morkoç, H., Ed. Park, Y. S., Academic Press, Willardson and Beer Series, eds Willardson, and Weber, , 52, Chapter 8, pp. 307, 1998.Google Scholar
8. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T. and Jenkins, T. J., IEEE Electron. Dev. Lett. 20, 161, 1999 Y.-F. Wu et al, IEEE Electron Device Letters, 19, 50 (1998) and A.T. Ping et al. IEEE Electron Device Lett., 19, 54, (1998).Google Scholar
9. Nguyen, N., Nguyen, C., Eastman, L.F., and Mishra, U., independent private communications.Google Scholar
10. Razeghi, M., and Rogalski, A., J. Appl. Phys., 79, 7433 (1996).Google Scholar
11. Schetzina, J., Private communication.Google Scholar
12. Morkoç, H., IEEE J. Selected topics in Quantum Electronics, Eds. Miles, Richard and Akasaki, I., 4, Number 3, 537, 1998.Google Scholar
13. Nakamura, S., private communication.Google Scholar
14. Gérard, J. M., Cabrol, O., and Sermage, B., Appl. Phys. Lett., 68, 3123 (1996).Google Scholar
15. Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 69, 4096 (1996).Google Scholar
16. Shen, X. Q., Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 72, 344 (1998).Google Scholar
17. Widmann, F., Daudin, B., Feuillet, G., Samson, Y., Rouvière, J. L., and Pelekanos, N., J. Appl. Phys., 83, 7618 (1998); F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvière, N. T. Pelekanos, and G. Fishman, Phys. Rev. B, 58, R15989 (1998).Google Scholar
18. Damilano, B., Grandjean, N., Semond, F., Massies, J., and Leroux, M., Appl. Phys. Lett., 75, 962, (1999).Google Scholar
19. Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 69, 4096 (1996).Google Scholar
20. Shen, X. Q., Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 72, 344 (1998).Google Scholar
21. Widmann, F., Daudin, B., Feuillet, G., Samson, Y., Rouvière, J. L., and Pelekanos, N., J. Appl. Phys., 83, 7618 (1998).Google Scholar
22. Widmann, F., Simon, J., Daudin, B., Feuillet, G., Rouvière, J. L., Pelekanos, N. T., and Fishman, G., Phys. Rev. B, 58, R15989 (1998).Google Scholar
23. Cingolani, Roberto, Botchkarev, A., Tang, H., Morkoç, Hadis, Colii, Giuliano and Lomascolo, Mauro, Carlo, A. Di, and Lugli, P., Phys. Rev. B, in press; Hadis Morkoç, Roberto Cingolani, and Bernard Gil, Solid State Electronics, vol.43, no.10, pp.19091927, October 1999.Google Scholar